Влияние температурного воздействия и окислительной среды на свойства карбидокремниевого волокна

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследовано влияние термообработки в окислительной среде и в вакууме на свойства карбидокремниевого волокна отечественного производства. Исходные и прогретые в вакууме и на воздухе волокна были исследованы комплексом физико-химических методов, включая сканирующую электронную микроскопию, КР- и ИК-спектроскопию, рентгенофазовый анализ. Изучена кинетика окисления волокна на воздухе в интервале 900–1000 °С. Энергия активации реакции окисления составила 72.0 ± 7.8 кДж/моль. Определены прочность на растяжение исходных и прошедших термообработку в разных средах волокон. Установлено, что термообработка в вакууме и окислительной среде приводит к существенной деградации свойств волокна.

Полный текст

Доступ закрыт

Об авторах

Д. В. Валяев

Институт химии твердого тела и механохимии СО Российской академии наук; Новосибирский государственный университет

Email: lozanov.25@yandex.ru
Россия, 630090 Новосибирск, ул. Кутателадзе, 18; 630090 Новосибирск, ул. Пирогова, 1

М. А. Голосов

Институт химии твердого тела и механохимии СО Российской академии наук

Email: lozanov.25@yandex.ru
Россия, 630090 Новосибирск, ул. Кутателадзе, 18

В. В. Лозанов

Институт химии твердого тела и механохимии СО Российской академии наук; Новосибирский государственный университет

Автор, ответственный за переписку.
Email: lozanov.25@yandex.ru
Россия, 630090 Новосибирск, ул. Кутателадзе, 18; 630090 Новосибирск, ул. Пирогова, 1

Н. И. Бакланова

Институт химии твердого тела и механохимии СО Российской академии наук

Email: lozanov.25@yandex.ru
Россия, 630090 Новосибирск, ул. Кутателадзе, 18

Список литературы

  1. Li L., Jian K., Wang Y. Oxidation Behavior of Continuous SiC Fibers in Static Air // 4th Int. Conf. on Sensors, Measurement and Intelligent Materials (ICSMIM 2015). 2016. P. 526–530. https://doi.org/10.2991/icsmim-15.2016.97
  2. Yang C., Wu J., Ditta A., Wei L., Zhao Z., Wu S. Effects of Temperature and Atmosphere on Microstructural Evolution and Mechanical Properties of KD-II SiC Fibers // Ceram. Int. 2020. V. 46. № 15. P. 24424–24434. https://doi.org/10.1016/j.ceramint.2020.06.225
  3. Naslain R., Christin F. SiC-Matrix Composite Materials for Advanced Jet Engines // MRS Bull. 2003. V. 28. № 9. P. 654–658. https://doi.org/10.1557/mrs2003.193
  4. Hay R.S., Chater R.J. Oxidation Kinetics and Strength of Hi-NicalonTM-S SiC Fiber after Oxidation in Dry and Wet Air // J. Am. Ceram. Soc. 2017. V. 100. № 9. P. 4110–4130. https://doi.org/10.1111/jace.14833
  5. Wilson M., Opila E. A Review of SiC Fiber Oxidation with a New Study of Hi-Nicalon SiC Fiber Oxidation // Adv. Eng. Mater. 2016. V. 18. № 10. P. 1698–1709. https://doi.org/10.1002/adem.201600166
  6. Hay R.S., Mogilevsky P. Model for SiC Fiber Strength after Oxidation in Dry and Wet Air // J. Am. Ceram. Soc. 2019. V. 102. № 1. P. 397–415. https://doi.org/10.1111/jace.15907
  7. Cao S., Wang J., Wang H. Effect of Heat Treatment on the Microstructure and Tensile Strength of KD-II SiC Fibers // Mater. Sci. Eng., A. 2016. V. 673. P. 55–62. https://doi.org/10.1016/j.msea.2016.07.066
  8. Zhu Y.T., Taylor S.T., Stout M.G., Butt D.P., Lowe T.C. Kinetics of Thermal, Passive Oxidation of Nicalon Fibers // J. Am. Ceram. Soc. 1998. V. 81. № 3. P. 655–660. https://doi.org/10.1111/j.1151-2916.1998.tb02386.x
  9. Hay R.S., Fair G.E., Bouffioux R., Urban E., Morrow J., Hart A., Wilson M. Hi-Nicalon-S SiC Fiber Oxidation and Scale Crystallization Kinetics // J. Am. Ceram. Soc. 2011. V. 94. № 11. P. 3983–3991. https://doi.org/10.1111/j.1551-2916.2011.04647.x
  10. Gauthier W., Pailler F., Lamon J., Pailler R. Oxidation of Silicon Carbide Fibers during Static Fatigue in Air at Intermediate Temperatures // J. Am. Ceram. Soc. 2009. V. 92. № 9. P. 2067–2073. https://doi.org/10.1111/j.1551-2916.2009.03180.x
  11. Sha J.J., Nozawa T., Park J.S., Katoh Y., Kohyama A. Effect of Heat Treatment on the Tensile Strength and Creep Resistance of Advanced SiC Fibers // J. Nucl. Mater. 2004. V. 329–333. P. 592–596. https://doi.org/10.1016/j.jnucmat.2004.04.123
  12. Прокип В.Э., Лозанов В.В., Банных Д.А., Бакланова Н.И. Влияние термообработки на механическую прочность бескерновых карбидокремниевых волокон // Неорган. материалы. 2020. Т. 56. № 3. С. 253–260. https://doi.org/10.31857/S0002337X2003015X
  13. Deal B.E., Grove A.S. General Relationship for the Thermal Oxidation of Silicon // J. Appl. Phys. 1965. V. 36. № 12. P. 3770–3778. https://doi.org/10.1063/1.1713945
  14. Mazerat S., Lacroix J., Rufino B., Pailler R. Carbon Derived from Silicon Carbide Fibers, a Comparative Study // Mater. Today Commun. 2019. V. 19. P. 177–185. https://doi.org/10.1016/j.mtcomm.2019.01.013
  15. Zu M., Zou S.M., Han S., Liu H.T. Effects of Heat Treatment on the Microstructures and Properties of KD-I SiC Fibres // Mater. Res. Innovations. 2015. V. 19. Supl. №1. P. S1–4 37--S1–4 41. https://doi.org/10.1179/1432891715Z.0000000001587
  16. Lee Y. The Second Order Raman Spectroscopy in Carbon Crystallinity // J. Nucl. Mater. 2004. V. 325. № 2–3. P. 174–179. https://doi.org/10.1016/j.jnucmat.2003.12.005
  17. Kim J., Tlali S., Jackson H.E., Webb J.E., Singh R.N. A Micro-Raman Investigation of the SCS-6 SiC Fiber // J. Appl. Phys. 1997. V. 82. № 1. P. 407–412. https://doi.org/10.1063/1.365828
  18. Malard L.M., Pimenta M.A., Dresselhaus G., Dresselhaus M.S. Raman Spectroscopy in Graphene // Phys. Rep. 2009. V. 473. № 5–6. P. 51–87. https://doi.org/10.1016/j.physrep.2009.02.003
  19. Yajima S., Okamura K., Hayashi J., Omori M. Synthesis of Continuous SiC Fibers with High Tensile Strength // J. Am. Ceram. Soc. 1976. V. 59. № 7–8. P. 324–327. https://doi.org/10.1111/j.1151-2916.1976.tb10975.x
  20. Wang H., Gao S., Peng S., Zhou X., Zhang H., Zhou X., Li B. KD-S SiCf/SiC Composites with BN Interface Fabricated by Polymer Infiltration and Pyrolysis Process // J. Adv. Ceram. 2018. V. 7. № 2. P. 169–177. https://doi.org/10.1007/s40145-018-0268-2
  21. Zakirov A.S., Navamathavan R., Jang Y.J., Jung A.S., Lee K.-M., Choi C.K. Comparative Study on the Structural and Electrical Properties of Low-k SiOC(-H) Films Deposited by Using Plasma Enhanced Chemical Vapor Deposition // J. Korean Phys. Soc. 2007. V. 50. № 6. P. 1809–1813. https://doi.org/10.3938/jkps.50.1809
  22. Kopáni M., Jergel M., Kobayashi H., Takahashi M., Brunner R., Mikula M., Imamura K., Jurečka S., Pinčík E. On Determination of Properties of Ultrathin and Very Thin Silicon Oxide Layers by FTIR and X-ray Reflectivity // MRS Proc. 2008. V. 1066. https://doi.org/10.1557/PROC-1066-A07-03
  23. Nyahumwa C. Multiple Defect Distributions on Weibull Statistical Analysis of Fatigue Life of Cast Aluminium Alloys // African J. Sci. Technol. 2005. V. 6. № 2. P. 43–54. https://doi.org/10.4314/ajst.v6i2.55174
  24. Thomason J.L. On the Application of Weibull Analysis to Experimentally Determined Single Fibre Strength Distributions // Compos. Sci. Technol. 2013. V. 77. P. 74–80. https://doi.org/10.1016/j.compscitech.2013.01.009
  25. Mazerat S., Pailler R. Oxidation Behavior of Si-C-O-(Ti) Fibers from 450° to 1140°С : Comparing the Kinetic of Oxide Scale Growth to the Slow Crack Growth // J. Eur. Ceram. Soc. 2024. V. 44. № 2. P. 760–775. https://doi.org/10.1016/j.jeurceramsoc.2023.09.070

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Диаграмма Si–C–O атомного состава карбидокремниевых волокон [14, 15].

Скачать (42KB)
3. Рис. 2. Дифрактограммы (а), КР-спектры (б) и ИК-спектры (в) исходных, прогретых в вакууме (1000 °С, 28 ч) и окисленных (1000 °С, 28 ч) карбидокремниевых волокон.

Скачать (56KB)
4. Рис. 3. СЭМ-снимки исходных (а) и прогретых в вакууме (1000°C, 28 ч) (б) карбидокремниевых волокон.

Скачать (22KB)
5. Рис. 4. СЭМ-снимки окисленных (1000°C, 28 ч) волокон: (а) – общий вид, (б) – поверхность, (в) – детали окисленного слоя.

Скачать (34KB)
6. Рис. 5. Аппроксимация зависимости толщины окисленного слоя от времени уравнениями Zhu et al. и Deal & Grove.

Скачать (19KB)
7. Рис. 6. Аппроксимация параболическим законом зависимости толщины оксидного слоя от времени.

Скачать (17KB)
8. Рис. 7. Определение энергии активации окисления карбидокремниевого волокна в интервале температур 900–1000 °С.

Скачать (15KB)
9. Рис. 8. Зависимости средней прочности волокон от времени обработки при 1000°С в вакууме и на воздухе.

Скачать (11KB)

© Российская академия наук, 2024