Barrier discharge conversion of gaseous olefins

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The oxidation of olefins С2С4 in a barrier discharge in the presence of water has been investigated, with the formation of oxygen-containing compounds and various hydrocarbons С1С5+ of limited and unsaturated structure being observed. The initial olefin’s molecular weight and structure have been found to exert a significant influence on the direction of the reaction. In the ethylene-propylene-butylene series, the proportion of oxygen-containing compounds increases from 28.1, 74.3 and 66.7 wt%, respectively. The oxidation of isobutene isomasalic aldehyde and acetone, with a content of 53 and 21 wt. %, respectively, primarily yields the formation of these compounds. In the case of the oxidation of butene-1 and butene-2, the predominant products are butanol-2, with a yield of up to 26 wt. %.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Ryabov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: a.y.ryabov@yandex.ru
Ресей, Tomsk

S. Kudryashov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: a.y.ryabov@yandex.ru
Ресей, Tomsk

Әдебиет тізімі

  1. Samoilovich V.G., Gibalov V.I., Kozlov K.V. // Physical Chemistry of Barrier Discharge. M: Moscow state university. 1989. 174 p.
  2. Suttikul T., Yaowapong-aree S., Sekiguchi H. et al. // Chem. Eng. Process. 2013. V. 70. P. 222–232.
  3. Tsolas N., Yetter R.A., Adamovich I.V. // Combust. Flame. 2017. V. 176. P. 462–478.
  4. Suttikul T., Tongurai C., Sekiguchi H., Chavadej S. // Plasma. Chem. Plasma Process. 2012. V. 32. P. 1169–1188.
  5. Sreethawong T., Suwannabart T., Chavadej S. // Plasma Chem. Plasma Process. 2008. V. 28. P. 629–642.
  6. Tiwari S., Caiola A., Bai X. et al. // Plasma Chem. Plasma Process. 2020. V. 40 P. 1–23.
  7. Xiong H., Zhu X., Lu S. et al. // Sci. Total Environ. 2021. V. 788. P. 147675.
  8. Lin H., Guan B., Cheng Q., Huang Z. // Energy Fuels. 2010. V. 24. P. 5418–5425.
  9. Kudryashov S.V., Ochered’ko A.N., Ryabov A.Yu., Shchyogoleva G. S. // Plasma Chem. Plasma Process. 2011. V. 31. P. 649–661.
  10. Ryabov A. Yu., Kudryashov S. V., Ochered’ko A. N., Dankovtsev G.O. // Chem. Sustain. Dev. 2021. V. 29. P. 180–184.
  11. Ryabov A.Yu., Kudryashov S.V., Ocheredko A.N. // High Energy Chemistry. 2022. V. 56. № 3. P. 245–250.
  12. Ryabov A.Yu., Kudryashov S.V. // High Energy Chemistry. 2023. V. 57. № 4. P. 327–331.
  13. Kudryashov S. Ryabov A. Shchyogoleva G. // J. Phys. D: Appl. Phys. 2016. V. 49. P. 025205.
  14. Fridman A. // Plasma Chemistry. NY: Cembridge University Press, 2012. 979 p.
  15. Janev R.K., Reiter D. // Physics of Plasmas. 2004. V. 11. P. 780.
  16. Cvetanovic R.J. // J. Phys. Chem. Ref. Data. 1987. V. 16. P, 261.
  17. Caracciolo A., Vanuzzo G., Balucani N. et al. // J. Phys. Chem. A. 2019. V. 123. P. 9934–9956.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Formation of oxygen-containing compounds (oxygenates) and hydrocarbons (●) during the oxidation of gaseous olefins with air, depending on its content in the initial mixture.

Жүктеу (129KB)
3. 2. The group composition of the reaction products depending on the air content in the initial mixture with butane.

Жүктеу (116KB)
4. 3. The composition and content of oxygen-containing compounds in the oxidation products of butenes at 90% of the air content in the initial mixture.

Жүктеу (143KB)

© Russian Academy of Sciences, 2024