Study of mechanism of structure formation in aqueous dispersions of NA+-smectites

Мұқаба
  • Авторлар: Pokidko B.V.1, Dulina O.A.2
  • Мекемелер:
    1. Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской академии наук
    2. МИРЭА – Российский технологический университет, кафедра наноразмерных систем и поверхностных явлений
  • Шығарылым: Том 87, № 2 (2025)
  • Беттер: 128-141
  • Бөлім: Articles
  • ##submission.dateSubmitted##: 06.07.2025
  • ##submission.dateAccepted##: 06.07.2025
  • ##submission.datePublished##: 06.07.2025
  • URL: https://clinpractice.ru/0023-2912/article/view/686803
  • DOI: https://doi.org/10.31857/S0023291225020054
  • EDN: https://elibrary.ru/tpbvdj
  • ID: 686803

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Present paper contains the results of an experimental study of the colloidal structures and rheology of aqueous dispersions of Na+-montmorillonite, which were obtained by capillary and rotational viscometry methods. Aqueous dispersions of clay colloids undergo significant structural changes, accompanied by great change in the type of the flow. All these changes are managed by alteration in indifferent electrolyte concentration within a narrow concentration range. Certain critical concentration was found to appear near about 3 mM NaCl concentration for the series of dispersions with 0.25–3.0 wt% solid content. This concentration point is significantly lower than the coagulation thresholds known from the experimental and theoretical works in this field. Existence of such a critical region may reflects both processes of formation/disruption of aggregates and change in the mechanism of either aggregation or structure formation. The obtained rheological data were compared with theoretical calculations and the results of dispersion analysis (by DLS method) of aqueous dispersions which might make a bit development in the field of colloid structure investigation of smectite dispersions.

Толық мәтін

Рұқсат жабық

Авторлар туралы

B. Pokidko

Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской академии наук

Хат алмасуға жауапты Автор.
Email: pokidko2000@mail.ru
Ресей, Москва

O. Dulina

МИРЭА – Российский технологический университет, кафедра наноразмерных систем и поверхностных явлений

Email: pokidko2000@mail.ru
Ресей, Москва

Әдебиет тізімі

  1. Van Olphen H. An Introduction to Clay Colloid Chemistry. 1963. NY and London: Wiley, 1963.
  2. Осипов В.И., Соколов В.Н. Глины и их свойства. Состав, строение и формирование свойств. М.: ГЕОС. 2013. С. 576.
  3. Handbook of clay science. Sec. ed. Part A. Fundamentals. Edited by F.Bergaya and G. Lagaly. Oxford, UK: Elsevier. 2006. Ch.8 (Colloid clay science. ed. by G.Lagaly, I.Dekany, pp. 243–346), p. 1246, ISBN: 0080441831.
  4. Bailey L., Lekkerkerker H.N.W., Maitland J.C. Smectite clay – inorganic particle mixed suspensions. Phase behavior and rheology // Soft Matter. 2015. V. 11. № 2. P. 222–236. https://doi.org/10.1039/c4sm01717j
  5. Norrish K. The swelling of montmorillonite // Discussions of the Faraday Society. 1954. V. 18. P. 120. https://doi.org/10.1039/c4sm01717j 134. https://doi.org/10.1039/df9541800120
  6. Michot L.J., Bihannic I., Porsch K. Phase diagrams of Wyoming Na-montmorillonite clay. Influence of particle anisotropy // Langmuir. 2004. V. 20. № 25. P. 10829–10837. https://doi.org/10.1021/la0489108
  7. Abend S., Lagaly G. Sol–gel transitions of sodium montmorillonite dispersions // Applied clay science. 2000. V. 16. № 3–4. P. 201–227 https://doi.org/10.1016/s0169-1317(99)00040-x
  8. Pilavtepe M., Delavernhe L., Steudel A. et al. Formation of arrested states in natural di- and trioctahedral smectite dispersions compared to those in synthetic hectorite – a macro- and microrheological study // Clays and clay minerals. 2018. V. 66. № 4. P. 339–352. https://doi.org/10.1346/CCMN.2018.064102
  9. Kimura H., Okubo T. Rheological properties of sodium montmorillonite in exhaustively deionized dispersions and in the presence of sodium chloride // Colloid and polymer science. 2002. V. 280. № 6. P. 579–583. https://doi.org/10.1007/s00396-001-0647-y
  10. Shoaib M., Khan S., Wani O.B., Adala A., Seiphoori A., Bobicki E.R. Modulation of soft glassy dynamics in aqueous suspensions of an anisotropic charged swelling clay through pH adjustment // Journal of colloid and interface science. 2022. V. 606. № 1. P. 860–872. https://doi.org/10.1016/j.jcis.2021.08.034
  11. Pecini E.M.; Avena M.J. Measuring the isoelectric point of the edges of clay mineral particles: The case of montmorillonite // Langmuir. 2013. V. 29. № 48. P. 14926–14934. https://doi.org/10.1021/la403384g
  12. Secor R.B., Radke C.J. Spillover of the diffuse double layer on montmorillonite particles // Journal of colloid and interface science. 1985. V. 103. № 1. P. 237–244. https://doi.org/10.1016/0021-9797(85)90096-7
  13. Tombacz E., Szekeres M. Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes // Applied clay science. 2004. V. 27. № 1–2. P. 75–94. https://doi.org/10.1016/j.clay.2004.01.001
  14. Miller S.E., Low P.F. Characterization of electrical double layer of montmorillonite // Langmuir. 1990. V. 6. № 3. P. 572–578. https://doi.org/10.1021/la00093a010
  15. Chen J.S., Cushman J.H., Low P.E. Rheological behavior of Na-montmorillonite suspensions at low electrolyte concentrations // Clays and clay minerals. 1990. V. 38. № 1. P. 57–62. https://doi.org/10.1346/ccmn.1990.0380108
  16. Lagaly G., Ziesmer S. Colloid chemistry of clay min erals: the coagulation of montmorillonite dispersion // Advances in colloid and interface science. 2003. V. 100–102. P. 105–128. https://doi.org/10.1016/S0001-8686(02)00064-7
  17. Kaufhold S., Kaufhold A., Dohrmann R. Comparison of the critical coagulation concentrations of allophane and smectite // Colloids and interfaces. 2018. V. 2. № 1. P. 1–14. https://doi.org/10.3390/colloids2010012
  18. Jackson, M.L. Soil Chemical Analysis: Advanced Course; UW-Madison Libraries parallel press, 2005; ISBN 1-893311-47-3.
  19. Koroleva T., Krupskaya V., Tyupina E., Morozov I., Kozlov P., Pokidko B., Zakusin S., Zaitseva T. Impacts of impurity removal chemical pretreatment procedures on the composition and adsorption properties of bentonites // Minerals. 2024. V. 14. № 8. P. 1–14. https://doi.org/10.3390/min14080736
  20. Покидько Б.В., Крупская В.В., Белоусов П.Е., Закусин С.В. Методика измерения емкости катонного обмена по адсорбции комплекса меди (II) с триэтилентетрамином – Cu-trien. ФБУ Ростест-Москва, Свидетельство об аттестации №АВ 0003160, метод № 1002/03 RA.RU. 311703-2022.
  21. Глины формовочные бентонитовые. ГОСТ 28177-89.
  22. Покидько Б.В. Экспериментальные методы точной оценки состава обменного комплекса смектитов и бентонитовых глин. Материалы VII Российской школы по глинистым минералам «Argilla Studium-2022», Москва: ИГЕМ РАН. 2022. C. 32–34.
  23. Kaufhold S, Dohrmann R., Stucki J.W., Anastacio A.S. Layered charge density of smectites – closing the gap between the structural formula method and the alkyl ammonium method // Clays and clay minerals. 2011. V. 59. № 2. P. 200–211. https://doi.org/10.1346/CCMN.2011.0590208
  24. Tsipursky S.J., Eisenhour D.D., Beall G.W. at al. Method of determining the composition of clay deposit. United state patent 6235533, 2001. AMCOL Int Corp. G01N 33/00
  25. Weber Ch., Kaufhold S. Hamaker functions for kaolinite and montmorillonite // Colloid and interface science communications. 2021. V. 43. P. 100442. https://doi.org/10.1016/j.colcom.2021.100442
  26. Segad M., Jonsson Bo., Akesson T., Cabane B. Ca/Na montmorillonite: structure, forces and swelling properties // Langmur. 2010. V. 26. №. 8. P. 5782–5790. https://doi.org/10.1021/la9036293
  27. Baravian C., Vantelon D., Yhomas F. Rheological determination of interaction potential energy for aqueous clay suspensions // Langmuir. 2003. V. 19. № 19. P. 8109–8114. https://doi.org/10.1021/la034169c
  28. Kaufhold S., Dohrmann R., Koch D., Houben G. The pH of aqueous bentonite suspensions // Clays and Clay Minerals. 2008. V. 56. № 3. P. 338–343. https://doi.org/10.1346/CCMN.2008.0560304
  29. Holmboe M., Wold S., Jonsson M. Porosity investigation of compacted bentonite using XRD profile modeling // Journal of contaminant hydrology. 2012. V. 128. № 1–4. P. 19–32. https://doi.org/10.1016/j.jconhyd.2011.10.005

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Idealized types of structures in aqueous dispersions of montmorillonite (according to [1], see explanation in text).

Жүктеу (88KB)
3. Fig. 2. Phase diagrams of aqueous dispersions of Na+-MMT. a – Na+-MMT isolated from Swy-2 bentonite (Source Clay Minerals Repository), curves 1–4 – sol-gel transition values ​​obtained using the concentration dependences of viscosity, osmotic pressure and birefringence ([6]), b – Na+-MMT isolated from Wyoming M40A bentonite (Sud Chemie AG), black and white circles – points corresponding to the results of rheological measurements, limiting different regions of the dispersion state [7], c – Na+-MMT isolated from Volclay bentonite (Sud Chemie AG) (pH = 9.7), circles and triangles – points corresponding to the results of rheological measurements, limiting different regions of the dispersion state [8].

Жүктеу (217KB)
4. Fig. 3. Model for describing the structure of primary particles in aqueous dispersions of smectites (see notation in text).

Жүктеу (162KB)
5. Fig. 4. RCD curves in aqueous 0.1% montmorillonite dispersions with NaCl concentration (mM; 0.1; 1, 3 and 5 mM).

Жүктеу (178KB)
6. Fig. 5. Dependences of relative viscosity on NaCl concentration for smectite dispersions. a – sample Na+-fr-1, particle content (wt. %). 1 – 0.25, 2 – 0.5, 3 – 1.0, 4 – 1.5 and 5–2.0. b – sample Na+-fr-2, particle content 2.7%.

Жүктеу (79KB)
7. Fig. 6. Dependence of relative viscosity on particle concentration (sample Na+-fr-1) at different NaCl concentrations (mM). 1 – 1.0, 2 – 1.5, 3 – 2.0, 4 – 3.0, 5 – 5.0, 6 – 7.0, 7 – 10.0

Жүктеу (109KB)
8. Fig. 7. Flow curves of 3.0% aqueous dispersions of Na+-smectite (sample Na+-fr-1), with different NaCl content (mM): 1 – 3.0, 2 – 3.5, 3 – 4.0, 4 – 7.0, 5 – 8.0, 6 – 10.0.

Жүктеу (86KB)
9. Fig. 8. Flow curves of 3.0% aqueous dispersions of Na+-smectite (sample Na+-fr-1) under conditions of structure destruction and restoration. NaCl concentration (mM): 1, 2 – 3.0, 3, 4 – 10.0. Curves 1, 3 – CS mode, ascending branch, curves 2, 4 – CR mode – descending branch.

Жүктеу (64KB)
10. Fig. 9. a – dependence of the viscosity of 2.7% dispersions (Na+-fr-2) on the shear stress at different NaCl concentrations (mM): 1 – 3.1; 2 – 3.2; 3 – 3.5; 4 – 3.8, 5 – 4.3; 6 – 5.0. b – dependence of the plastic viscosity of 2.7% dispersions on the NaCl concentration

Жүктеу (158KB)
11. Fig. 10. a – dependence of viscosity on Na+ concentration in 1.9% dispersions (sample Na+-fr-1). Curve 1 – NaCl addition, curve 2 – NaOH addition. pH for [NaOH] = 2, 3, 5, 7 and 10 mM were 7.6, 8.3, 10.7, 11.4 and 11.7, respectively. b – dependence of pH of 2.7% dispersions on NaCl content

Жүктеу (146KB)

© Russian Academy of Sciences, 2025