Эффект самосборки наночастиц при плазменном разряде в капиллярном электроде

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Представлен результат синтеза субмикронных частиц в ходе неравновесных процессов, происходящих в системе капиллярный электрод–водный электролит на электродах благородных металлов (золота, серебра и платины) под действием микросекундных импульсов тока. Вариация величины и знака импульса напряжения на “жертвенном электроде” влияет на форму и состав наночастиц. Получены наноструктуры с характерными кристаллографическими формами.

Texto integral

Acesso é fechado

Sobre autores

А. Яфясов

Санкт-Петербургский государственный университет

Autor responsável pela correspondência
Email: yafyasov@gmail.com
Rússia, г. Санкт-Петербург

В. Божевольнов

Санкт-Петербургский государственный университет

Email: yafyasov@gmail.com
Rússia, г. Санкт-Петербург

В. Михайловский

Санкт-Петербургский государственный университет

Email: yafyasov@gmail.com
Rússia, г. Санкт-Петербург

Bibliografia

  1. Соколов М.А., Брытов И.А. // Петербургский журн. электроники. 2008. № 2–3. C. 100.
  2. Соколов М.А., Брытов И.А. // Журн. аналит. химии. 2010. Т. 65. № 11. С. 1144.
  3. Bozhevolnov Yu.V., Bozhevolnov V.B., Yafyasov A.M. // XI Intern. Symp. on Explosive Production of New Materials / Ed. Deribas A.A., Scheck Yu.B. 2012. P. 23.
  4. Allen S.M., Cahn J.W. // Acta Metal. 1979. V. 27. № 6. P. 1085. https://doi.org/10.1016/0001-6160(79)90196-2
  5. Xiaohua Y., El-Sayed I.H., Qian W. et al. // J. Am. Chem. Soc. 2006. V. 128. № 6. P. 2115. doi: 10.1021/ja057254a
  6. Daniel M.C., Astruc D. // Chem. Rev. 2006. V. 104. № 1. P. 293. https://doi.org/10.1021/cr030698+
  7. Tjoa V., Jun W., Dravid V. et al. // J. Mater. Chem. 2011. V. l. № 39. P. 15593. https://doi.org/10.1039/c1jm12676h
  8. Dykmana L., Khlebtsov N. // Chem. Soc. Rev. 2012. V. 41. № 6. P. 2256. https://doi.org/10.1039/c1cs15166e
  9. Cuenya B.R. // Thin Solid Films. 2010. V. 518. № 12. P. 3127. https://doi.org/10.1016/j.tsf.2010.01.018
  10. Rodriguez-Lorenzo L., Rica R., Alvarez-Puebla R.A. et al. // Nat. Mater. 2012. V. 11. № 7. P. 604. https://doi.org/10.1038/nmat3337
  11. Li S.Y., Wang M. // Nano Life. 2012. V. 2. № 1. Art. 1230002. https://doi.org/10.1142/S1793984411000311
  12. Nune S.K., Chanda N., Shukla N. et al. // J. Mater. Chem. 2009. V. 19. P. 2912. https://doi.org/10.1039/b822015h
  13. Choi J., Park S., Stojanović Z. et al. // Nanoclus. Langmuir. 2013. V. 29. P. 1569. https://doi.org/10.1021/la403888f
  14. Gray P., Scott S.K. // Chem. Eng. Sci. 1984. V. 39. № 6. P. 1087. https://doi.org/10.1016/0009-2509(84)87017-7
  15. Munafo R. Stable localized moving patterns in the 2-D Gray-Scott model. 2014. https://doi.org/10.48550/arXiv.1501.01990
  16. Васильева А.Б., Бутузов В.Ф. Асимптотические методы в теории сингулярных возмущений. М.: Высшая школа, 1990. 208 c.
  17. Васильева А.Б., Бутузов В.Ф., Нефедов Н.Н. // Фунд. и прикл. мат. 1998. Т. 4. № 3. С. 799.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The type of particles formed during the analysis of the composition of the solution. The spectrum of energy dispersion analysis shows the presence of a “sacrificial electrode" material (gold) in the composition of the products. The pulse voltage is 7 kV, the exposure time is 10 min.

Baixar (20KB)
3. Fig. 2. Structure (scanning electron microscope) and elemental composition of particles (energy dispersion analysis, Ge substrate) for a platinum electrode. The pulse voltage is 8 kV, the exposure time is 10 min.

Baixar (33KB)
4. Fig. 3. Micrography of particles with low size dispersion for platinum (a) and silver (b) electrodes. The pulse voltage is 7 kV, the exposure time is 10 min.

Baixar (44KB)
5. Fig. 4. Model free energy density F(u). Conditions for the formation of the corresponding phase, taking into account the ratio of the values of the function u(x, t) and the separatrix a (x, ε) for the moment t0 = 0.

Baixar (17KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024