Запасы углерода и азота, микробная активность гумусового горизонта суглинистых почв после массового ветровала в широколиственном лесу заповедника “Калужские засеки”
- Авторы: Ханина Л.Г.1, Иващенко К.В.2, Смирнов В.Э.1,3, Бобровский М.В.2
-
Учреждения:
- Институт математических проблем биологии Российской академии наук – филиал Института прикладной математики им. М.В. Келдыша Российской академии наук
- Институт физико-химических и биологических проблем почвоведения Российской академии наук – обособленное подразделение Пущинского научного центра биологических исследований Российской академии наук
- Центр по проблемам экологии и продуктивности лесов Российской академии наук
- Выпуск: № 11 (2024)
- Страницы: 1488-1502
- Раздел: ОРГАНИЧЕСКОЕ ВЕЩЕСТВО И БИОЛОГИЧЕСКИЕ СВОЙСТВА ПОЧВ ЕСТЕСТВЕННО РАЗВИВАЮЩИХСЯ ЛЕСНЫХ ЭКОСИСТЕМ
- URL: https://clinpractice.ru/0032-180X/article/view/677861
- DOI: https://doi.org/10.31857/S0032180X24110046
- EDN: https://elibrary.ru/JOTCVK
- ID: 677861
Цитировать
Аннотация
Вклады ветровалов и крупных древесных остатков (валежа) в динамику органического вещества почвы весьма противоречивы и недостаточно изучены. Вместе с тем ветровалы – это естественные нарушения, частота которых по прогнозным оценкам будет возрастать в связи с глобальным изменением климата. Оценивали влияние массового ветровала, а именно валежных стволов и окон в пологе леса, на содержание и запасы общих C и N, а также на микробную активность почв на покровных лёссовидных суглинках в мезофитном многовидовом широколиственном лесу. Исследовали дерново-подзолистые и серые почвы (Retisols и Luvisols по классификации WRB) на массовом ветровале через 15 лет после катастрофического события. Отбор почвенных проб проводили из верхнего 5 см слоя горизонта А в трех биотопах: (1) под лежащим стволом, (2) на расстоянии 50–70 см от ствола на участке, свободном от валежа, и (3) в фоновом лесу, не нарушенном ветровалом. Использовали серию однофакторных дисперсионных анализов и попарный критерий Геймса–Хауэлла для оценки влияния вида упавшего дерева и трех типов биотопов на содержание и запас C и N, их отношение, микробные характеристики, значения pH, а также влажность и плотность почвы. Содержание и запасы C и N, микробная активность и влажность почвы оказались наибольшими на участке массового ветровала, свободном от лежащих стволов. Оценки почв под валежными стволами в основном были близки к оценкам фонового леса. Сделан вывод, что на суглинистых почвах окна в пологе леса и валеж, возникшие в результате массового ветровала, оказывают значительное влияние на почвенные характеристики.
Полный текст
Открыть статью на сайте журналаОб авторах
Л. Г. Ханина
Институт математических проблем биологии Российской академии наук – филиал Института прикладной математики им. М.В. Келдыша Российской академии наук
Автор, ответственный за переписку.
Email: khanina.larisa@gmail.com
ORCID iD: 0000-0002-8937-5938
Россия, ул. проф. Виткевича, 1, Пущино, 142290
К. В. Иващенко
Институт физико-химических и биологических проблем почвоведения Российской академии наук – обособленное подразделение Пущинского научного центра биологических исследований Российской академии наук
Email: khanina.larisa@gmail.com
ORCID iD: 0000-0001-8397-158X
Россия, ул. Институтская, 2, Пущино, 142290
В. Э. Смирнов
Институт математических проблем биологии Российской академии наук – филиал Института прикладной математики им. М.В. Келдыша Российской академии наук; Центр по проблемам экологии и продуктивности лесов Российской академии наук
Email: khanina.larisa@gmail.com
ORCID iD: 0000-0003-4918-3939
Россия, ул. проф. Виткевича, 1, Пущино, 142290; ул. Профсоюзная, 84/32с14, Москва, 117997
М. В. Бобровский
Институт физико-химических и биологических проблем почвоведения Российской академии наук – обособленное подразделение Пущинского научного центра биологических исследований Российской академии наук
Email: khanina.larisa@gmail.com
Россия, ул. Институтская, 2, Пущино, 142290
Список литературы
- Бобровский М.В. Ветровальные нарушения в почвенном покрове заповедника “Калужские засеки” // Лесоведение. 2004. № 5. С. 28–35.
- Бобровский М.В. Автоморфные почвы заповедника “Калужские засеки” и их генезис // Тр. гос. природного заповедника “Калужские засеки”. Вып. 1. Калуга: Полиграф-Информ, 2003. С. 10–55.
- Бобровский М.В. Лесные почвы Европейской России: биотические и антропогенные факторы формирования. М.: Товарищество научных изданий КМК, 2010. 359 с.
- Бобровский М.В., Лойко С.В. Возраст и особенности генезиса темногумусовых почв “Калужских засек” // Вестник Моск. ун-та. Сер. 5, география. 2019. № 5. С. 108–117.
- Бобровский М.В., Стаменов М.Н. Катастрофический ветровал 2006 года на территории заповедника “Калужские засеки” // Лесоведение. 2020. № 6. С. 523–536.
- Булыгина О.Н., Разуваев В.Н., Трофименко Л.Т., Швец Н.В. Описание массива данных среднемесячеой температуры воздуха на станциях России. Свидетельство о государственной регистрации базы данных № 2014621485. [Электронный ресурс]. http://meteo.ru/data/156-temperature#описание-массива-данных (дата обращения 15.02.2024).
- Васенев И.И. Почвенные сукцессии. М.: ЛКИ, 2008. 400 с.
- Васенев И.И., Таргульян В.О. Ветровал и таежное почвообразование. Режимы, процессы, морфогенеза почвенных сукцессий. М.: Наука, 1995. 240 с.
- Грозовская И.С., Ханина Л.Г., Смирнов В.Э., Бобровский М.В., Романов М.С., Глухова Е.М. Биомасса напочвенного покрова в еловых лесах Костромской области // Лесоведение. 2015. № 1. С. 63–76.
- Евдокимов И.В., Костин Н.В., Быховец С.С., Кураков А.В. Активность выделения СO2, азотфиксации и денитрификации при разложении крупных древесных остатков ели обыкновенной в южной тайге // Почвоведение. 2023. № 3. С. 370–379. https://doi.org/10.31857/S0032180X22600949
- Заугольнова Л.Б., Браславская Т.Ю. Анализ ассоциаций мезофитных широколиственных лесов в центре Европейской России // Растительность России. 2003. № 4. С. 3–28.
- Ильин Б.М., Булыгина О.Н., Богданова Э.Г., Веселов В.М., Гаврилова С.Ю. Описание массива месячных сумм осадков, с устранением систематических погрешностей осадкомерных приборов. [Электронный ресурс]. http://meteo.ru/data/506-mesyachnye-summy-osadkov-s-ustraneniem-sistematicheskikh-pogreshnostej-osadkomernykh-priborov (дата обращения 15.02.2024).
- Курганова И.Н., Лопес де Гереню В.О., Мостовая А.С., Овсепян Л.А., Телеснина В.М., В.И. Личко, Ю.И. Баева. Влияние процессов естественного лесовосстановления на микробиологическую активность пост-агрогенных почв Европейской части России // Лесоведение. 2018. № 1. С. 3–23.
- Курганова И.Н., Телеснина В.М., Лопес де Гереню В.О., Личко В.И., Овсепян Л.А. Изменение запасов углерода, микробной и ферметативной активности агродерново-подзолов южной тайги в ходе постагрогенной эволюции // Почвоведение. 2022. № 7. С. 825–842. https://doi.org/10.31857/S0032180X22070073
- Лукина Н.В., Полянская Л.М., Орлова М.А. Питательные режим почв северотаежных лесов. М.: Наука, 2008. 342 с.
- Петров В.Г. Геологическое строение и полезные ископаемые Калужской области. Калуга: Эйдос, 2003. 440 с.
- Попадюк Р.В., Смирнова О.В., Заугольнова Л.Б., Ханина Л.Г., Бобровский М.В., Яницкая Т.О. Заповедник “Калужские засеки” // Сукцессионные процессы в заповедниках России и проблемы сохранения биологического разнообразия. СПб.: Российское ботаническое общество, 1999. С. 58–105.
- Почвы заповедников и национальных парков Российской Федерации / Под ред. Добровольского Г.В. М.: НИА-Природа–Фонд Инфосфера, 2012. 476 с.
- Скворцова Е.Б., Уланова Н.Г., Басевич В.Ф. Экологическая роль ветровалов. М.: Лесная промышленность, 1983. 192 с.
- Теория и практика химического анализа почв / Под ред. Воробьевой Л.А. М.: ГЕОС, 2006. 400 с.
- Теории и методы физики почв / Под ред. Шеина Е.В., Карпачевского Л.О. М.: Гриф и К, 2007. 616 с.
- Урусевская И.С., Алябина И.О., Винюкова В.П., Востокова Л.Б., Дорофеева Е.И., Шоба С.А., Щипихина Л.С. Карта почвенно-экологического районирования Российской Федерации. Масштаб 1:2 500 000. М., 2013.
- Физико-географическое районирование Нечерноземного центра. М.: Изд-во МГУ, 1963. 450 с.
- Ханина Л.Г., Бобровский М.В., Смирнов В.Э. Динамика запасов биофильных элементов в валеже и почве после массового ветровала в широколиственном лесу на флювиогляциальных песках // Вестник Томского гос. ун-та. Биология. 2023. № 62. С. 29–52. https://doi.org/10.17223/19988591/62/2
- Ханина Л.Г., Смирнов В.Э., Бобровский М.В. Элементный состав валежа различных древесных пород и стадий разложения в широколиственном лесу заповедника “Калужские засеки” // Лесоведение. 2023. № 4. С. 353–368. https://doi.org/10.31857/S0024114823040034
- Широких П.С., Сулейманов Р.Р., Котлугалямова Э.Ю., Мартыненко В.Б. Изменения растительного и почвенного покрова в широколиственных лесах национальногоо парка “Башкирия” после массового ветровала // Известия Уфимского НЦ РАН. 2017. № 3(1). С. 214–220.
- Шихов А.Н., Чернокульский А.В., Калинин Н.А., Пьянков С.В. Ветровалы в лесной зоне России и условия их возникновения. Пермский государственный национальный исследовательский университет. Пермь, 2023. 284 с.
- Anderson J.P.E., Domsch K.H. A physiological method for the quantitative measurement of microbial biomass in soils // Soil Biol. Biochem. 1978. V. 10. P. 215–221.
- Ananyeva N.D., Susyan E.A., Chernova O.V., Wirth S. Microbial respiration activities of soils from different climatic regions of European Russia // Eur. J. Soil Biol. 2008. V. 44. P. 147–157.
- Arnstadt T., Hoppe B., Kahl T., Kellner H., Krüger D., Bauhus J., Hofrichter M. Dynamics of fungal community composition, decomposition and resulting deadwood properties in logs of Fagus sylvatica, Picea abies and Pinus sylvestris // For. Ecol. Manag. 2016. V. 382. P. 129–142. http://dx.doi.org/10.1016/j.foreco.2016.10.004
- Bantle A., Borken W., Ellerbrock R.H., Schulze E.D., Weisser W.W., Matzner E. Quantity and quality of dissolved organic carbon released from coarse woody debris of different tree species in the early phase of decomposition // For. Ecol. Manag. 2014. V. 329. P. 287–294. http://dx.doi.org/10.1016/j.foreco.2014.06.035
- Bertin C., Yang X., Weston L.A. The role of root exudates and allelochemicals in the rhizosphere // Plant and Soil. 2003. V. 256. P. 67–83. http://doi.org/10.1023/A:1026290508166
- Błońska E., Kacprzyk M., Spólnik A. Effect of deadwood of different tree species in various stages of decomposition on biochemical soil properties and carbon storage // Ecol. Res. 2017. V. 32. P. 193–203.
- Błońska E., Lasota J., Piaszczyk W. Dissolved carbon and nitrogen release from deadwood of different tree species in various stages of decomposition // Soil Sci. Plant Nutr. 2019. V. 65(1). P. 100–107.
- Cerioni, M., Brabec, M., Bače, R. et al. Recovery and resilience of European temperate forests after large and severe disturbances // Glob. Change Biol. 2024. V. 30. P. e17159. https://doi.org/10.1111/gcb.17159
- Creamer R.E., Schulte R.P.O., Stone D., Gal A., Krogh P.H., Lo Papa G, Murray P.J., Pérès G., Foerster B., Rutgers M., Sousa J.P. Winding A. Measuring basal soil respiration across Europe: Do incubation temperature and incubation period matter? // Ecol. Indic. 2014. V. 36. P. 409–418.
- Dhiedt E., De Keersmaeker L., Vandekerkhove K., Verheyen K. Effects of decomposing beech (Fagus sylvatica) logs on the chemistry of acidified sand and loam soils in two forest reserves in Flanders (northern Belgium) // For. Ecol. Manag. 2019. V. 445. P. 70–81. https://doi.org/10.1016/j.foreco.2019.05.006
- dos Santos L.T., Marra D.M., Trumbore S., de Camargo P.B., Negrón-Juárez R., Lima A.J.N., Ribeiro G.H.P.M., dos Santos J., Higuchi N. Windthrows increase soil carbon stocks in a central Amazon forest // Biogeoscience. 2016. V. 13. P. 1299–1308.
- Games P.A, Howell J.F. Pairwise multiple comparison procedures with unequal N’s and/or variances: A Monte Carlo study // J. Educ. Stat. 1976. V. 1(2). P. 113–125.
- Gömöryová E., Fleischer P., Pichler V., Homolák M., Gere R., Gömöry D. Soil microorganisms at the windthrow plots: the effect of post-disturbance management and the time since disturbance // iForest. 2017. V. 10. P. 515–521. https://doi.org/10.3832/ifor2304-010
- Harmon M.E. The role of woody detritus in biogeochemical cycles: past, present, and future // Biogeochemistry. 2021. V. 154. P. 349–369. https://doi.org/10.1007/s10533-020-00751-x
- Hotta W., Morimoto J., Inoue T., Suzuki S.N., Umebayashi T., Owari T., Shibata H., Ishibashi S., Harag T., Nakamura F. Recovery and allocation of carbon stocks in boreal forests 64 years after catastrophic windthrow and salvage logging in northern Japan // For. Ecol. Manag. 2020. V. 468. P. 118169. https://doi.org/10.1016/j.foreco.2020.118169
- Ishizuka M., Ochiai Y., Utsugi H. Microenvironments and growth in gaps // Nakashizuka M. (ed.). Diversity and interaction in a temperate forest community: Ogawa Forest Reserve of Japan. Springer-Verlag, Tokyo. 2002. P. 229–244.
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015.
- Kahl T., Mund M., Bauhus J., Schulze E.-D. Dissolved organic carbon from European beech logs: Patterns of input to and retention by surface soil // Ecoscience. 2012. V. 19(4). P. 364–373. https://doi.org/10.2980/19-4-3501
- Kappes H., Catalano C., Topp W. Coarse woody debris ameliorates chemical and biotic soil parameters of acidified broad-leaved forests // Geoderma. 2007. V. 36. P. 190–198. https://doi.org/10.1016/j.apsoil.2007.02.003
- Kayahara G.J., Klinka K., Lavkulich L.M. Effects of decaying wood on eluviation, podzolization, acidification, and nutrition in soils with different moisture regimes // Environ. Monit. Assess. 1996. V. 39. P. 485–492. https://doi.org/10.1007/BF00396163
- Khanina L.G., Smirnov V.E., Romanov M.S., Bobrovsky M.V. Effect of spring grass fires on vegetation patterns and soil quality in abandoned agricultural lands at local and landscape scales in Central European Russia // Ecol. Process. 2018. V. 7. P. 38. https://doi.org/10.1186/s13717-018-0150-8
- Khanina L.G., Bobrovsky M.V., Zhmaylov I.V. Vegetation diversity on the microsites caused by tree uprooting during a catastrophic windthrow in temperate broadleaved forests // Rus. J. Ecosyst. Ecol. 2019. V. 4(3.1). https://doi.org/10.21685/2500-0578-2019-3-1
- Khanina L., Bobrovsky M., Smirnov V., Romanov M. Wood decomposition, carbon, nitrogen, and pH values in logs of 8 tree species 14 and 15 years after a catastrophic windthrow in a mesic broad-leaved forest in the East European plain // For. Ecol. Manag. 2023. V. 545. P. 121275. https://doi.org/10.1016/j.foreco.2023.121275
- Lodge D.J., Winter D., González G., Clum N. Effects of hurricane-felled tree trunks on soil carbon, nitrogen, microbial biomass, and root length in a wet tropical forest // Forests. 2016. V. 7. P. 264. https://doi.org/10.3390/f7110264
- Löf M., Brunet J., Hickler T., Birkedal M., Jensen A. Restoring broadleaved forests in southern Sweden as climate changes // A Goal-Oriented Approach to Forest Landscape Restoration / Ed. by Stanturf J., Madsen P., Lamb D. World Forests. 2012. V. 16. Springer, Dordrecht. P. 373–391. https://doi.org/10.1007/978-94-007-5338-9_14
- Lu N., Chen S., Wilske B., Sun G., Chen J. Evapotranspiration and soil water relationships in a range of disturbed and undisturbed eco-systems in the semi-arid Inner Mongolia, China // J Plant Ecol. 2011. V. 4. P. 49–60. https://doi.org/10.1093/jpe/rtq035
- Magnússon R.I., Tietema A., Cornelissen J.H.C., Hefting M.M., Kalbitz K. Tamm Review: Sequestration of carbon from coarse woody debris in forest soils // For. Ecol. Manag. 2016. V. 377. P. 1–15. https://doi.org/10.1016/j.foreco.2016.06.033
- Mayer M., Prescott C.E., Abakerd W.E.A. et al. Tamm Review: Influence of forest management activities on soil organic carbon stock: A knowledge synthesis // For. Ecol. Manag. 2020. V. 460. P. 118127. https://doi.org/10.1016/j.foreco.2020.118127
- Mayer M., Ruscha S., Didiond M., Baltensweiler A., Walthert L., Ranft F. Rigling A., Zimmermann S., Hagedorn F. Elevation dependent response of soil organic carbon stocks to forest windthrow // Sci. Total Environ. 2023. V. 857. P. 159694. http://dx.doi.org/10.1016/j.scitotenv.2022.159694
- Minnich C., Peršoh D., Poll C., Borken W. Changes in chemical and microbial soil parameters following 8 years of deadwood decay: an experiment with logs of 13 tree species in 30 forests // Ecosystems. 2021. V. 24. P. 955–967. https://doi.org/10.1007/s10021-020-00562-z
- Mitchell S.J. Wind as a natural disturbance agent in forests: a synthesis // Forestry. 2013. V. 86. P. 147–157.
- Nordén B., Olsen S.L., Haug S., Rusch G. Recent forest on abandoned agricultural land in the boreonemoral zone – Biodiversity of plants and fungi in relation to historical and present tree cover // For. Ecol. Manag. 2021. V. 489. 119045. https://doi.org/10.1016/j.foreco.2021.119045
- Piaszczyk W., Błońska E., Lasota J. Soil biochemical properties and stabilisation of soil organic matter in relation to deadwood of different species // FEMS Microbiol. Ecol. 2019. V. 95. No. 3. fiz011. https://doi.org/10.1093/femsec/fiz011
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2022. https://www.R-project.org/.
- Ruxton G.D., Beauchamp G. Time for some a priori thinking about post hoc testing // Behav. Ecol. 2008. V. 19(3). P. 690–693.
- Šamonil P., Daněk P., Schaetzl R.J., Tejnecký V., Drábek O. Converse pathways of soil evolution caused by tree uprooting: A synthesis from three regions with varying soil formation processes // Catena. 2018. V. 161. P. 122–136.
- Šamonil P., Daněk P., Baldrian P., Tláskal V., Tejnecký V., Drábek O. Convergence, divergence or chaos? Consequences of tree trunk decay for pedogenesis and the soil microbiome in a temperate natural forest // Geoderma. 2020. V. 376. P. 114499. https://doi.org/10.1016/j.geoderma.2020.114499
- Shikhov A.N., Chernokulsky A.V., Azhigov I.O., Semakina A.V. A satellite-derived database for stand-replacing windthrow events in boreal forests of European Russia in 1986–2017 // Earth Syst. Sci. Data. 2020. V. 12. P. 3489–3513.
- Shimada M., Akamtsu Y., Tokimatsu T., Mii K., Hattori T. Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays // J. Biotechnology. 1997. V. 53(2–3). P. 103-113.
- Spears J.D.H., Lajtha K. The imprint of coarse woody debris on soil chemistry in the western Oregon cascades // Biogeochemistry. 2004. V. 71. P. 163–175. https://doi.org/10.1007/s10533-005-6395-1
- Stutz K.P., Lang F. Potentials and unknowns in managing coarse woody debris for soil functioning // Forests. 2017. V. 8(2). P. 37. https://doi.org/10.3390/f8020037
- Stutz K.P., Lang F. Forest ecosystems create pedogenic patchworks through woody debris, trees, and disturbance // Geoderma. 2023. V. 429. P. 116246. https://doi.org/10.1016/j.geoderma.2022.116246
- Stutz K.P., Dann D., Wambsganss J., Scherer-Lorenzen M., Lang, F. Phenolic matter from deadwood can impact forest soil properties // Geoderma. 2017. V. 288. P. 204–212. http://dx.doi.org/10.1016/j.geoderma.2016.11.014
- Stutz K.P., Kaiser K., Wambsganss J., Santos F., Berhe A.A., Lang F. Lignin from white-rotted European beech deadwood and soil functions // Biogeochemistry. 2019. V. 145(1–2). P. 81–105. http://dx.doi.org/10.1007/s10533-019-00593-2
- Susyan E.A., Ananyeva N.D., Gavrilenko E.G., Chernova O.V., Bobrovskii M.V. Microbial biomass carbon in the profiles of forest soils of the southern taiga zone // Eurasian Soil Science. 2009. V. 42(10). P. 1148–1155. https://doi.org/10.1134/S1064229309100093
- Thom D., Seidl R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests // Biological Rev. 2016. V. 91. P. 760–781. https://doi.org/10.1111/brv.12193
- Toothaker L.E. Multiple Comparison Procedures. SAGE Publications, Inc, 1993. 104 p.
- Ulanova N.G. The effects of windthrow on forests at different spatial scales: a review // For. Ecol. Manag. 2000. V. 135. P. 155–167.
- Wambsganss J., Stutz K.P., Lang F. European beech deadwood can increase soil organic carbon sequestration in forest topsoils // For. Ecol. Manag. 2017. V. 405. P. 200–209. https://doi.org/10.1016/j.foreco.2017.08.053
- Wasak K., Klimek B., Drewnik M. Rapid effects of windfall on soil microbial activity and substrate utilization patterns in the forest belt in the Tatra Mountains // J. Soil Sediment. 2020. V. 20. P. 801–815. https://doi.org/10.1007/s11368-019-02439-8
- Yuan J., Hou L., Wei X., Shang Z., Cheng F., Zhang S. Decay and nutrient dynamics of coarse woody debris in the Qinling Mountains, China // PLoS ONE. 2017. V. 12(4). P. e0175203.
- Zalamea M., González G., Lodge D.J. Physical, chemical, and biological properties of soil under decaying wood in a tropical wet forest in Puerto Rico // Forests. 2016. V. 7(8). P. 168. https://doi.org/10.3390/f7080168
Дополнительные файлы
