Optimal motion of a body controlled by an internal mass in the resistive environment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Translational movement of a body controlled by means of periodical motions of an internal mass within the environment with the quadratic resistance is considered. The average speed of motion depending on the constraints imposed is evaluated, and the conditions are found that correspond to the maximum average speed.

Full Text

Restricted Access

About the authors

T. V. Glazkov

Ishlinsky Institute for Problems in Mechanics RAS

Author for correspondence.
Email: t.glazkov@bk.ru
Russian Federation, Moscow

F. L. Chernousko

Ishlinsky Institute for Problems in Mechanics RAS

Email: chern@ipmnet.ru
Russian Federation, Moscow

References

  1. Nagaev R.F., Tamm E.A. Vibrational displacement in a medium with quadratic resistance to motion // Mashinoved., 1980, no. 4, pp. 3–8. (in Russian)
  2. Gerasimov S.A. On vibrational flight of a symmetric system // Izv. vuzov. Mashinostr., 2005, no. 8, pp. 3–7. (in Russian)
  3. Yegorov A.G., Zakharova O.S. Optimal quasistationary motion of a vibro-robot in a viscous medium // Izv. vuzov. Matematika, 2012, no. 2, pp. 57–64. (in Russian)
  4. Liu Y., Wiercigroch M., Pavlovskaya E., Yu. Y. Modeling of a vibro-impact capsule system // Int. J. Mech. Sci., 2013, vol. 66, pp. 2–11.
  5. Liu Y., Pavlovskaya E., Hendry D., Wiercigroch M. Optimization of the vibroimpact capsule system // J. Mech. Engng., 2016, vol. 62, pp. 430–439.
  6. Fang H.B., Xu J. Dynamics of a mobile system with an internal acceleration-controlled mass in a resistive medium // J. Sound&Vibr., 2011, vol. 330, pp. 4002–4018.
  7. Xu J., Fang H. Improving performance: recent progress on vibration-driven locomotion systems // Nonlin. Dyn., 2019, vol. 98, pp. 2651–2669.
  8. Tahmasian S. Dynamic analysis and optimal control of a drag-based vibratory systems using averaging // Nonlin. Dyn., 2021, vol. 104, pp. 2201–2217.
  9. Chernousko F.L. The optimal periodic motions of a two-mass system in a resistant medium // JAMM, 2008, vol. 72, iss. 2, pp. 116–125.
  10. Chernousko F.L., Bolotnik N.N. Dynamics of Mobile Systems with Controlled Configuration. Moscow: Fizmatlit, 2022. 464 p. (in Russian)
  11. Chernousko F.L. Optimization of motion of a body with an internal mass under quadratic resistance // Dokl. Phys., 2023, vol. 513, pp. 80–86. (in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Mechanical system.

Download (94KB)
3. Fig. 2. Movement of the internal mass.

Download (61KB)
4. Fig. 3. Hull speed.

Download (43KB)
5. Fig. 4. Dependence of Φ on the parameter σ for k=3.5.

Download (55KB)
6. Fig. 5. Dependence of Φ on the parameter σ for k=10.

Download (56KB)
7. Fig. 6. Dependence of Φ on the parameter σ at μ1=0.4.

Download (59KB)
8. Fig. 7. Dependence of the normalized maximum speed v on the parameter σ for μ ≪1.

Download (47KB)
9. Fig. 8. Dependence of the value of Q on the parameter σ.

Download (58KB)

Copyright (c) 2024 Russian Academy of Sciences