Высокоэнтропийный расплав фторидов и хлоридов лития, натрия и калия как возможный теплоноситель для жидкосолевых реакторов
- Авторы: Закирьянов Д.О.1, Ткачев Н.К.2
-
Учреждения:
- Институт высокотемпературной электрохимии УрО РАН
- Институт металлургии УрО РАН
- Выпуск: Том 66, № 6 (2024)
- Страницы: 538-542
- Раздел: Статьи
- URL: https://clinpractice.ru/0033-8311/article/view/681266
- DOI: https://doi.org/10.31857/S0033831124060037
- ID: 681266
Цитировать
Аннотация
Рассматривается возможный жидкосолевой теплоноситель для реакторов на расплавленных солях из смеси шести фторидов и хлоридов лития, натрия и калия. Этот состав, содержащий меньше солей лития, чем FLiNaK или FLiBe, имеет более высокую термодинамическую стабильность из-за повышенной энтропии смешения. Химическая формула раствора с максимальной энтропией Li1/6Na1/6K1/6F1/4Cl1/4 соответствует смешиванию различных галогенидов щелочных металлов MX (M = Li, Na, K; X = F, Cl), взятых в эквимолярной пропорции. Проведены молекулярно-динамические оценки плотности, теплоемкости, теплопроводности и вязкости. Расчеты свидетельствуют, что данная шестикомпонентная смесь по своим физико-химическим свойствам занимает промежуточное положение между фторидами и хлоридами.
Ключевые слова
Полный текст

Об авторах
Д. О. Закирьянов
Институт высокотемпературной электрохимии УрО РАН
Автор, ответственный за переписку.
Email: N.K.Tkachev@gmail.com
Россия, Екатеринбург
Н. К. Ткачев
Институт металлургии УрО РАН
Email: N.K.Tkachev@gmail.com
Россия, Екатеринбург
Список литературы
- Le Brun C. // J. Nucl. Mater. 2007. Vol. 360. P. 1–5. https://doi.org/10.1016/j.jnucmat.2006.08.017
- Molten Salt Reactors and Thorium Energy / Eds T.J. Dolan, I. Pazsit, A. Rykhlevskii, R. Yoshioka, Elsevier, 2023. https://doi.org/10.1016/C2021-0-01689-8
- Krepel J., Dietz J., De Oliveira R. Characterization of the molten chloride fast reactor fuel cycle options, Int. Conf. Fast Reactors and Related Fuel Cycles FR22: Sustainable Clean Energy for the Future (CN-291), Vienna, 2022. https://conferences.iaea.org/event/218/contributions/19007/
- Bessada C. From fluorides to chlorides in nuclear energy detection of anionic complexes by NMR, EXAFS and MD at high temperature, EUCHEM Conf., Spain: MSIL, 2024.
- Sangster J.S., Pelton A. // J. Phys. Chem. Ref. Data. 1987. Vol. 16. N 3. P. 509–561.
- Пригожин И.Р., Дэфей Р. Химическая термодинамика. Новосибирск: Наука, 1966. 509 с.
- Cantor B. // Prog. Mater. Sci. 2021. Vol. 120. ID 100754. https://doi.org/10.1016/j.pmatsci.2020.100754
- Блинкин В.Л., Новиков В.М. Жидкосолевые ядерные реакторы. М.: Атомиздат, 1978. 112 c.
- Tkachev N. Three compositions of high-entropy melts of lithium, sodium and potassium fluorides and chlorides as promising coolants for molten salt reactors // ChemRXiv. 2024. https://doi.org/10.26434/chemrxiv-2024-b6j96
- Диаграммы плавкости солевых систем. Многокомпонентные системы / Под. ред. В.И. Посыпайко, Е.А. Алексеевой. М.: Химия, 1977. С. 165.
- Бергман А.Г., Березина С.И., Бакумская Е.А. // ЖНХ. 1963. Т. 8. С. 2144.
- Zakiryanov D.O., Kobelev M.A., Tkachev N.K. // Fluid Phase Equil. 2020. Vol. 506. ID 112369. https://doi.org/10.1016/j.fluid.2019.112369
- Минченко В.И., Степанов В.П. Ионные расплавы: упругие и калорические свойства. Екатеринбург: ИВТЭ УрО РАН, 2008.
- Salanne M., Simon C., Turq P., Madden P.A. // J. Fluorine Chem. 2009. Vol. 130. P. 38–44. https://doi.org/10.1016/j.jfluchem.2008.07.013
- Ingersoll D.T., Forsberg C.W., MacDonald P.E. Trade Studies for the Liquid-Salt-Cooled Very High-Temperature Reactor: Fiscal Year 2006 Progress Report. Oak Ridge, Tennessee: Oak Ridge National Laboratory, 2007.
- An X.-H., Cheng J.-H., Su T., Zhang P. // AIP Conf. Proc. 2017. Vol. 1850. ID 070001. https://doi.org/10.1063/1.4984415
- Janz G.J., Tomkins R.P.T. Physical Properties Data Compilations Relevant to Energy Storage: IV Molten Salts: Data on Additional Single and Multi-Component Salt Systems, National Standard Reference Data System, National Bureau of Standards Report NSRDS-NBS 61, 1981. Part IV.
- Rudenko A., Kataev A., Tkacheva O. // Materials. 2022. Vol. 15. ID 4884. https://doi.org/10.3390/ma15144884
- Nguyen D.K., Danek V. Chem. Papers. 2000. Vol. 54. N 5. P. 277–281.
- Wang J., Liu C.-L. // J. Mol. Liq. 2019. Vol. 273. P. 447–454. https://doi.org/10.1016/j.molliq.2018.10.062
- Zakiryanov D.O., Tkachev N.K. // Int. J. Heat Mass Transfer. 2021. Vol. 181. ID 121863. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121863
- Gallagher R.C., Birri A., Russell N.G., Phan A.-T., Gheribi A.E. // J. Mol. Liq. 2022. Vol. 361. ID 119151. https://doi.org/10.1016/j.molliq.2022.119151
- An X.-H., Cheng J.-H., Su T., Zhang P. // AIP Conf. Proc. 2017. Vol. 1850. ID 070001. https://doi.org/10.1063/1.4984415
- Nagasaka Y., Nakazawa N., Nagashima A. // Int. J. Thermophys. 1992. Vol. 13. P. 555–574. https://doi.org/10.1007/bf00501941 https://en.wikipedia.org/wiki/Molten-salt_reactor
- Capelli E., Konings R.J.M. // Comprehensive Nuclear Materials. 2020. 2nd Ed. Vol. 7. P. 256–283. https://doi.org/10.1016/B978-0-12-803581-8.11794-1
- Yingling J.A., Schorne-Pinto J., Aziziha M., Ard J.C., Mofrad A.M., Christian S., et al. // J. Chem. Thermodyn. 2023. Vol. 179. ID 106974. https://doi.org/10.1016/j.jct.2022.106974
- Smith A.L. // J. Mol. Liq. 2022. Vol. 360. ID 119426. https://doi.org/10.1016/j.molliq.2022.119426
Дополнительные файлы
