Сравнительное исследование температурного коэффициента Q10 гибернирующих сусликов Urocitellus undulatus и охлажденных крыс разного возраста

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проведен анализ температурного коэффициента Q10 частоты сердечных сокращений (Q10HR) и потребления кислорода (Q10Ox) при пробуждении длиннохвостых сусликов Urocitellus undulatus, а также при отогревании предварительно охлажденных взрослых крыс и крысят. Величину Q10Ox вычисляли по стандартной формуле, тогда как для вычисления Q10HR формула была эмпирически модифицирована для отслеживания изменений этого параметра в широком диапазоне температур тела (Tb). Установлено, что у сусликов в начальный период выхода из спячки, при Tb ≤ 10 ℃, наблюдались высокие значения температурных коэффициентов Q10HR = 40 – 50 и Q10Ox = 6 – 7. Еще более высокие значения Q10HR > 100 были обнаружены в начале отогревания крысят, хотя у них был низкий уровень Q10Ox = 1.2. Взрослые крысы не выдерживали охлаждения ниже 16 ℃ и демонстрировали умеренную вариабельность как Q10HR = 2.0 – 4.0, так и Q10Ox = 2.0 – 2.2. В процессе восстановления нормальной Tb значения Q10HR у всех животных приближались к величине ~2.0, предсказанной правилом Вант Гоффа-Аррениуса для химических реакций в живой и неживой природе. Мы предполагаем, что высокие значения Q10HR и Q10Ox, обнаруженные в ранний период выхода сусликов из гибернации, могут свидетельствовать о функционировании адаптационных механизмов, направленных на ускорение согревания тела. Устойчивость к охлаждению и высокий коэффициент Q10HR у крысят, как представителей отряда Rodentia, к которому относятся также естественные гибернаторы — суслики, могут свидетельствовать о функционировании в ювенальный период крыс рудиментарных механизмов адаптации к охлаждению и гетеротермии.

Полный текст

Доступ закрыт

Об авторах

Н. М. Захарова

Институт биофизики клетки РАН

Автор, ответственный за переписку.
Email: n_m_zakharova@pbcras.ru
Россия, Пущино

Ю. С. Тараховский

Институт биофизики клетки РАН; Институт теоретической и экспериментальной биофизики РАН

Email: tarahov@rambler.ru
Россия, Пущино; Пущино

М. О. Хренов

Институт биофизики клетки РАН

Email: n_m_zakharova@pbcras.ru
Россия, Пущино

Список литературы

  1. Tansey EA, Johnson CD (2015) Recent advances in thermoregulation. Adv Physiol Ed 39:139–148. https://doi.org/10.1152/advan.00126.2014
  2. Horii Y, Shiina T, Shimizu Y (2018) The Mechanism Enabling Hibernation in Mammals. Adv Exp Med Biol 1081:45–60. https://doi.org/10.1007/978-981-13-1244-1_3
  3. Ivanov KP (2000) Physiological blocking of the mechanisms of cold death: theoretical and experimental considerations. J Thermal Biol 25:467–479. https://doi.org/10.1016/s0306-4565(00)00012-7
  4. Carey HV, Andrews MT, Martin SL (2003) Mammalian Hibernation: Cellular and Molecular Responses to Depressed Metabolism and Low Temperature. Physiol Rev 83:1153–1181. https://doi.org/10.1152/physrev.00008.2003
  5. Ruf T, Geiser F (2014) Daily torpor and hibernation in birds and mammals. Biol Rev 90:891–926. https://doi.org/10.1111/brv.12137
  6. Davidson JO, Wassink G, van den Heuij LG, Bennet L, Gunn AJ (2015) Therapeutic Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy — Where to from Here? Front Neurol 6:198. https://doi.org/10.3389/fneur.2015.00198
  7. Han Z, Liu X, Luo Y, Ji Х (2015) Therapeutic hypothermia for stroke: Where to go? Experimental Neurology 272:67–77. https://doi.org/10.1016/j.expneurol.2015.06.006
  8. Huang F-Y, Huang B-T, Wang P-J, Zuo Z-L, Heng Y, Xia T-L, Gui Y-Y, Lv W-Y, Zhang C, Liao Y-B, Liu W, Chen M, Zhu Y (2015) The efficacy and safety of prehospital therapeutic hypothermia in patients with out-of-hospital cardiac arrest: A systematic review and meta-analysis. Resuscitation 96:170–179. https://doi.org/10.1016/j.resuscitation.2015.08.005
  9. Otto KA (2015) Therapeutic hypothermia applicable to cardiac surgery. Vet Anaesth Analg 42:559–569. https://doi.org/10.1111/vaa.12299
  10. Cerri M, Hitrec T, Luppi M, Amici R (2021) Be cool to be far: Exploiting hibernation for space exploration. Neurosci Biobehav Rev 128:218–232. https://doi.org/10.1016/j.neubiorev.2021.03.037
  11. Choukèr (2018) Hibernating astronauts-science or fiction? Pflueg. Arch. Eur. J. Physiol.
  12. Zakharova NM, Tarahovsky YS, Komelina NP, Fadeeva IS, Kovtun AL (2021) Long-term pharmacological torpor of rats with feedback-controlled drug administration. Life Sci Space Res 28:18–21. https://doi.org/10.1016/j.lssr.2020.11.002
  13. Kornhall DK, Martens-Nielsen J (2016) The prehospital management of avalanche victims. J R Army Med Corps 162:406–412. https://doi.org/10.1136/jramc-2015-000441
  14. Sward DG, Bennett BL (2014) Wilderness medicine. World J Emerg Med 5:5–15. https://doi.org/10.5847/wjem.j.issn.1920-8642.2014.01.001
  15. Alam HB (2012) Translational barriers and opportunities for emergency preservation and resuscitation in severe injuries. Br J Surg 99 Suppl 1:29–39. https://doi.org/10.1002/bjs.7756
  16. Tarahovsky YS, Khrenov MO, Kovtun AL, Zakharova NM (2020) Comparison of natural and pharmacological hypothermia in animals: Determination of activation energy of metabolism. Journal of Thermal Biology 92:102658. https://doi.org/10.1016/j.jtherbio.2020.102658
  17. Zakharova NM, Tarahovsky YS, Fadeeva IS, Zakharova NM (2019) A pharmacological composition for induction of a reversible torpor-like state and hypothermia in rats. Life Sci 219:190–198. https://doi.org/10.1016/j.lfs.2019.01.023
  18. Shimaoka H, Shiina T, Suzuki H, Horii Y, Horii K, Shimizu Y (2021) Successful induction of deep hypothermia by isoflurane anesthesia and cooling in a non-hibernator, the rat. J Physiol Sci 71:10. https://doi.org/10.1186/s12576-021-00794-1
  19. Yang Y, Yuan J, Field RL, Ye D, Hu Z, Xu K, Xu L, Gong Y, Yue Y, Kravitz AV, Bruchas MR, Cui J, Brestoff JR, Chen H (2023) Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound. Nat Metab 5:789–803. https://doi.org/10.1038/s42255-023-00804-z
  20. Bridwell RE, Willis GC, Gottlieb M, Koyfman A, Long B (2021) Decompensated hypothyroidism: A review for the emergency clinician. Am J Emerg Med 39:207–212. https://doi.org/10.1016/j.ajem.2020.09.062
  21. Naito H, Nojima T, Fujisaki N, Tsukahara K, Yamamoto H, Yamada T, Aokage T, Yumoto T, Osako T, Nakao A (2020) Therapeutic strategies for ischemia reperfusion injury in emergency medicine. Acute Med Surg 7:e501. https://doi.org/10.1002/ams2.501
  22. Zakharova NM, Tarahovsky YS, Komelina NP, Khrenov MO, Kovtun AL (2021) Pharmacological torpor prolongs rat survival in lethal normobaric hypoxia. J Thermal Biol 98:102906. https://doi.org/10.1016/j.jtherbio.2021.102906
  23. Bejaoui M, Pantazi E, Folch-Puy E, Baptista PM, García-Gil A, Adam R, Roselló-Catafau J (2015) Emerging concepts in liver graft preservation. World J Gastroenterol 21:396–407. https://doi.org/10.3748/wjg.v21.i2.396
  24. Minor T, Paul A (2013) Hypothermic reconditioning in organ transplantation. Curr Opin Organ Transplant 18:161–167. https://doi.org/10.1097/MOT.0b013e32835e29de
  25. Søreide K (2014) Clinical and translational aspects of hypothermia in major trauma patients: from pathophysiology to prevention, prognosis and potential preservation. Injury 45:647–654. https://doi.org/10.1016/j.injury.2012.12.027
  26. Soo E, Welch A, Marsh C, McKay D (2020) Molecular strategies used by hibernators: Potential therapeutic directions for ischemia reperfusion injury and preservation of human donor organs. Transplantat Rev 34:100512. https://doi.org/10.1016/j.trre.2019.100512
  27. Kang K (2016) Exceptionally high thermal sensitivity of rattlesnake TRPA1 correlates with peak current amplitude. Biochim Biophys Acta 1858:318–325. https://doi.org/10.1016/j.bbamem.2015.12.011
  28. Hiebert SM, Noveral J (2007) Are chicken embryos endotherms or ectotherms? A laboratory exercise integrating concepts in thermoregulation and metabolism. Adv Physiol Educ 31:97–109. https://doi.org/10.1152/advan.00035.2006
  29. Schmidt-Nielsen K (1990) Animal physiology: Adaptation and environment, 4th ed. Cambridge University Press, Cambridge, New York
  30. Geiser F (2016) Conserving energy during hibernation. J Exp Biol 219:2086–2087. https://doi.org/10.1242/jeb.129171
  31. Geiser F (2004) Metabolic Rate and Body Temperature Reduction During Hibernation and Daily Torpor. Ann Rev Physiol 66:239–274. https://doi.org/10.1146/annurev.physiol.66.032102.115105
  32. Kampmann B, Bröde P (2019) Heat Acclimation Does Not Modify Q10 and Thermal Cardiac Reactivity. Front Physiol 10:1524. https://doi.org/10.3389/fphys.2019.01524
  33. Currie SE, Noy K, Geiser F (2015) Passive rewarming from torpor in hibernating bats: minimizing metabolic costs and cardiac demands. Am J Physiol Regul Integr Comp Physiol 308:R34–41. https://doi.org/10.1152/ajpregu.00341.2014
  34. Bröde P, Kampmann B (2018) Accuracy of metabolic rate estimates from heart rate under heat stress—an empirical validation study concerning ISO 8996. Ind Health 57:615–620. https://doi.org/10.2486/indhealth.2018-0204
  35. Kampmann B, Bröde P (2015) Metabolic costs of physiological heat stress responses — Q10 coefficients relating oxygen consumption to body temperature. Extrem Physiol Med 4:A103. https://doi.org/10.1186/2046-7648-4-S1-A103
  36. Michenfelder JD, Milde JH (1991) The relationship among canine brain temperature, metabolism, and function during hypothermia. Anesthesiology 75:130–136. https://doi.org/10.1097/00000542-199107000-00021
  37. Song X, Körtner G, Geiser F (1997) Thermal relations of metabolic rate reduction in a hibernating marsupial. Am J Physiol 273:R2097-104. https://doi.org/10.1152/ajpregu.1997.273.6.R2097
  38. Liu B, Hui K, Qin F (2003) Thermodynamics of Heat Activation of Single Capsaicin Ion Channels VR1. Biophysical Journal 85:2988–3006.
  39. Fohlmeister JF (2015) Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature. J Neurophysiol 113:3759–3777. https://doi.org/10.1152/jn.00551.2014
  40. Andjus RK, Smith AU (1954) Revival of hypothermic rats after arrest of circulation and respiration. J Physiol 123:66P-67P.
  41. Andjus RK, Smith AU (1955) Reanimation of adult rats from body temperatures between 0 and + 2 degrees C. J Physiol 128:446–472. https://doi.org/10.1113/jphysiol.1955.sp005318
  42. Andjus RK, Dzakula Z, Markley JL, Macura S (2005) Brain energetics and tolerance to anoxia in deep hypothermia. Ann N Y Acad Sci 1048:10–35. https://doi.org/10.1196/annals.1342.003
  43. Lomako VV, Shilo AV (2009) Effect of General Cooling on Rat Behaviour in "Open Field" Test. Probl Cryobiol 19:421–430.
  44. Bullard RW, Funkhouser GE (1962) Estimated regional blood flow by rubidium 86 distribution during arousal from hibernation. Am J Physiology-Legacy Content 203:266–270. https://doi.org/10.1152/ajplegacy.1962.203.2.266
  45. Zakharova NM (2014) Some features of body warming at provoked awakening of hibernating ground squirrels Spermophilus undulatus. Fundamental Res 6:1401–1405. (In Russ).
  46. Mundim KC, Baraldi S, Machado HG, Vieira FMC (2020) Temperature coefficient (Q10) and its applications in biological systems: Beyond the Arrhenius theory. Ecol Model 431:109127. https://doi.org/10.1016/j.ecolmodel.2020.109127
  47. Rogalska J, Caputa M (2005) Spontaneously reduced body temperature and gasping ability as a mechanism of extreme tolerance to asphyxia in neonatal rats. J Thermal Biol 30:360–369. https://doi.org/10.1016/j.jtherbio.2005.02.003
  48. Kletkiewicz H, Rogalska J, Nowakowska A (2016) Effects of body temperature on post-anoxic oxidative stress from the perspective of postnatal physiological adaptive processes in rats. J Physiol Pharmacol 67:287–299.
  49. Geiser F, Currie SE, O'Shea KA, Hiebert SM (2014) Torpor and hypothermia: reversed hysteresis of metabolic rate and body temperature. Am J Physiol-Regul, Integrat Comparat Physiol 307:R1324-R1329. https://doi.org/10.1152/ajpregu.00214.2014
  50. Lyman CP, Williams JS, Malan A, Wang LCH (1984) Hibernation and torpor in mammals and birds. Academic Press, New York.
  51. Zanetti F, Chen C-Y, Baker HA, Sugiura MH, Drew KL, Barati Z (2023) Cardiac Rhythms and Variation in Hibernating Arctic Ground Squirrels. Physiol Biochem Zool 96:167–176. https://doi.org/10.1086/724688
  52. MacCannell ADV, Jackson EC, Mathers KE, Staples JF (2018) An improved method for detecting torpor entrance and arousal in a mammalian hibernator using heart rate data. J Exp Biol 221. https://doi.org/10.1242/jeb.174508
  53. Milsom WK, Zimmer MB, Harris MB (1999) Regulation of cardiac rhythm in hibernating mammals. Com Biochem Physiol Part A: Mol & Integrat Physiol 124:383–391. https://doi.org/10.1016/s1095-6433(99)00130-0
  54. Shinde AB, Song A, Wang QA (2021) Brown Adipose Tissue Heterogeneity, Energy Metabolism, and Beyond. Front Endocrinol 12:651763. https://doi.org/10.3389/fendo.2021.651763
  55. Nedergaard J, Cannon B (2018) Brown adipose tissue as a heat-producing thermoeffector. http://dx.doi.org/10.1016/B978-0-444-63912-7.00009-6
  56. Shimaoka H, Kawaguchi T, Morikawa K, Y Sano, K Naitou, H Nakamori, T Shiina, Y Shimizu (2017) Induction of hibernation-like hypothermia by central activation of the A1 adenosine receptor in a non-hibernator, the rat. J Physiol Sci 68:425–430. https://doi.org/10.1007/s12576-017-0543-y
  57. Nowack J, Turbill C (2022) Survivable hypothermia or torpor in a wild-living rat: rare insights broaden our understanding of endothermic physiology. J Comp Physiol B 192:183–192. https://doi.org/10.1007/s00360-021-01416-3

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Избранные примеры экспериментов, показывающие связь коэффициентов Q10 с изменением температурных и физиологических показателей, полученных при пробуждении сусликов. (а) — Изменение во времени полученных в эксперименте параметров Th и HR, а также величин Q10HR, вычисленных с использованием (3). Примечание: кривая Q10HR короче кривых Тh и HR, поскольку, в соответствии с (3), кривая Q10HR не включает первые и последние 15 минут измерений. (b) — Изменение во времени полученных в эксперименте параметров Tb и VOx, а также величин Q10Ox вычисленных с использованием (2)

Скачать (34KB)
3. Рис. 2. Зависимость коэффициентов Q10 от температуры. Представлена зависимость Q10HR от Th , а также зависимость Q10Ox от Tb Где: (а, a’) — спящие суслики, (b, b’) — взрослые крысы, (c, c’) –крысята. Значения представлены в форме Mean ± SEM, n = 5–10. Примечание: кривые a, b и c получены с использованием (3), тогда как кривые a’, b’ и c’ получены с использованием (2). Однофакторный тест ANOVA (программное обеспечение GraphPad Prism 8) показывает, что средние данные Q10Ox сусликов (a’) зависели от температуры: **** P < 0.0001. Зависимость от температуры наблюдалась также при анализе выделенного диапазона температур 20℃ — 35℃, когда значения находились в диапазоне 0 ≤ Q10Ox ≤ 1, *** p < 0.0005. У взрослых крыс и крысят (b’ и c’) величины Q10Ox статистически не завесили от температуры: p < 0.05

Скачать (89KB)

© Российская академия наук, 2024