Microwave-assisted hydrothermal synthesis of α-Mn2O3
- Authors: Zakharova G.S.1, Fattakhova Z.A.1
 - 
							Affiliations: 
							
- Institute of Solid State Chemistry, Ural Division, Russian Academy of Sciences
 
 - Issue: Vol 70, No 8 (2025)
 - Pages: 1031-1037
 - Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
 - URL: https://clinpractice.ru/0044-457X/article/view/690763
 - DOI: https://doi.org/10.31857/S0044457X25080069
 - EDN: https://elibrary.ru/jjkljr
 - ID: 690763
 
Cite item
Abstract
For the first time, α-Mn2O3 of cubic crystal structure was synthesized by microwave-assisted hydrothermal treatment of a reaction mixture containing potassium permanganate and ascorbic acid taken in a molar ratio of 1 : (1–1.5), followed by annealing in air. A possible mechanism for the formation of manganese(III) oxide is proposed. The main physicochemical characteristics of the synthesized α-Mn2O3 are determined using X-ray phase analysis, scanning electron microscopy, and low-temperature nitrogen adsorption. It has been established that by varying the molar ratio of the components of the reaction mass, as well as the annealing conditions of the intermediate products, β-MnO2, Mn3O4 and MnO/C, Mn3O4/C composites can be additionally obtained.
About the authors
G. S. Zakharova
Institute of Solid State Chemistry, Ural Division, Russian Academy of Sciences
														Email: volkov@ihim.uran.ru
				                					                																			                												                								Ekaterinburg, 620077 Russia						
Z. A. Fattakhova
Institute of Solid State Chemistry, Ural Division, Russian Academy of Sciences
							Author for correspondence.
							Email: volkov@ihim.uran.ru
				                					                																			                												                								Ekaterinburg, 620077 Russia						
References
- Wang Y., Ye X.-Y., Han G.-Z. // Colloids Surf., A. 2024. V. 682. Р. 132869. https://doi.org/10.1016/j.colsurfa.2023.132869
 - Yin X.-T., Wu S.-S., Dastan D. et al. // Surf. Interfaces. 2021. V. 25. P. 101190. https://doi.org/10.1016/j.surfin.2021.101190
 - Shaik M.R., Syed R., Adil S.F. et al. // Saudi J. Biol. Sci. 2021. V. 28. № 2. P. 1196. https://doi.org/10.1016/j.sjbs.2020.11.087
 - He Y., Pu Y., Zhu B. et al. // J. Alloys Compd. 2023. V. 934. P. 167933. https://doi.org/10.1016/j.jallcom.2022.167933
 - Ma Z., Li L., Chen S. et al. // J. Energy Storage. 2024. V. 76. P. 109779. https://doi.org/10.1016/j.est.2023.109779
 - Wang B., Yu J., Lu Q. et al. // J. Alloys Compd. 2022. V. 926. P. 166775. https://doi.org/10.1016/j.jallcom.2022.166775
 - Tang C., Wang X., Ma M. et al. // Chem. Eng. J. 2023. V. 471. P. 144784. https://doi.org/10.1016/j.cej.2023.144784
 - Shao Y., Ren B., Jiang H. et al. // J. Hazard. Mater. 2017. V. 333. P. 222. http://dx.doi.org/10.1016/j.jhazmat.2017.03.014
 - Chandiran K., Murugesan R.A., Balaji R. et al. // Mater. Res. Express. 2020. V. 7. № 7. Р. 074001. https://doi.org/10.1088/2053-1591/ab9fbd
 - Lu H., Zhang Y., Liuf P. // J. Appl. Electrochem. 2016. V. 46. № 10. P. 1059. https://doi.org/10.1007/s10800-016-0985-6
 - Cheng C., Huang Y., Wang N. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 18. P. 9526. https://doi.org/10.1021/acsami.5b00884
 - Hassan M.S., Amna T., Pandeya D.R. et al. // Appl. Microbiol. Biotechnol. 2012. V. 95. № 1. P. 213. https://doi.org/10.1007/s00253-012-3878-6
 - Son Y.-H., Bui P.T.M., Lee H.-R. et al. // Coatings. 2019. V. 9. № 10. P. 631. https://doi.org/10.3390/coatings9100631
 - Wang G., Li Q., Du M. et al. // Int. J. Electrochem. Sci. 2020. V. 15. P. 7601. https://doi.org/10.20964/2020.08.09
 - Zhang Y.-C., Li J.-T., Wu Z.-G. et al. // J. Alloys Compd. 2017. V. 721. P. 229. http://dx.doi.org/10.1016/j.jallcom.2017.05.305
 - Yu J., Zhu L., Fan C. et al. // Particuology. 2015. V. 22. P. 89. http://dx.doi.org/10.1016/j.partic.2014.10.007
 - Javed Q., Feng-Ping W., Rafique M.Y. et al. // Chin. Phys. B. 2012. V. 21. № 11. 117311. https://doi.org/10.1088/1674-1056/21/11/117311
 - Bah M.A., Jaffari G.H., Khan F.A., Shah S.I. // Appl. Surf. Sci. 2016. V. 375. P. 136. http://dx.doi.org/10.1016/j.apsusc.2016.02.145
 - Abdullah M.M., Siddiqui S.A., Al-Abbas S.M. // J. Electron. Mater. 2020. V. 49. № 7. P. 4410. https://doi.org/10.1007/s11664-020-08171-1
 - Pudukudy M., Yaakob Z., Rajendran R. // Mater. Lett. 2014. V. 136. P. 85. http://dx.doi.org/10.1016/j.matlet.2014.08.019
 - Yu Q., Xiong J., Li Z. et al. // Catal. Today. 2021. V. 376. P. 229. https://doi.org/10.1016/j.cattod.2020.05.039
 - Gong P., Xie J., Fang D. et al. // Mater. Res. Express. 2017. V. 4. № 11. Р. 115036. https://doi.org/10.1088/2053-1591/aa9a25
 - Umar A., Jung I., Ibrahim A.A. et al. // J. Energy Storage. 2024. V. 81. P. 110305. https://doi.org/10.1016/j.est.2023.110305
 - Фаттахова З.А., Захарова Г.С. // Журн. неорган. химии. 2020. Т. 65. № 4. С. 458. https://doi.org/10.31857/S0044457X20040054
 - Фаттахова З.А., Вовкотруб Э.Г., Захарова Г.С. // Журн. неорган. химии. 2021. Т. 66. № 1. С. 41. https://doi.org/10.31857/S0044457X21010025
 - Alagar S., Madhuvilakku R., Mariappan R., Piraman S. // J. Power Sources. 2019. V. 441. P. 227181. https://doi.org/10.1016/j.jpowsour.2019.227181
 - Gomaa I., Abdel-Salam A.I., Khalid A., Soliman T.S. // Opt. Laser Technol. 2023. V. 161. P. 109126. https://doi.org/10.1016/j.optlastec.2023.109126
 - Cheng L., Men Y., Wang J. et al. // Appl. Catal. B. 2017. V. 204. P. 374. http://dx.doi.org/10.1016/j.apcatb.2016.11.041
 - Araujo R.N., Raimundo R.A., Neves G. A. et al. // J. Phys. Chem. Solids. 2024. V. 192. P. 112086. https://doi.org/10.1016/j.jpcs.2024.112086
 - Ginsburg A., Keller D.A., Barad H.-N. et al. // Thin Solid Films. 2016. V. 615. P. 261. http://dx.doi.org/10.1016/j.tsf.2016.06.050
 - Sing K.S.W., Everett D.H., Haul R.A.W. et al. // Pure Appl. Chem. 1985. V. 57. № 4. P. 603. https://doi.org/10.1351/pac198557040603
 
Supplementary files
				
			
					
						
						
						
						
									


