Spin Properties of Chiral BN Nanotubes (7, n2)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using the nonempirical relativistic augmented cylindrical wave method, the dependences of the electronic structure of single-layer (n1, n2) BN nanotubes with n1 = 7 and 6 ≥ n2 ≥ 1 on chirality and spin are calculated. All nanotubes are wide-bandgap semiconductors with optical gaps equal to 3.6–4.6 eV and spin-orbit splittings of the top of the valence band and the minimum of the conduction band of 0.15–0.004 meV. The energies of spin splittings in right- and left-handed nanotubes coincide, and the spin directions are opposite. The (7, 1) nanotube is most suitable for selective spin transport of electrons, which can find application in spintronics elements.

Толық мәтін

Рұқсат жабық

Авторлар туралы

P. Dyachkov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: p_dyachkov@rambler.ru
Ресей, 31, Leninsky Ave., Moscow, 119991

E. Dyachkov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: p_dyachkov@rambler.ru
Ресей, 31, Leninsky Ave., Moscow, 119991

Әдебиет тізімі

  1. Rikken G.L., Avarvari N.J. // Phys. Chem. Lett. 2023. V. 14. P. 9727. https://doi.org/10.1021/acs.jpclett.3c02546
  2. Atzori M., Santanni F., Breslavetz I. // J. Am. Chem. Soc. 2020. V. 142. P. 13908. https://doi.org/10.1021/jacs.0c06166
  3. Tokura Y., Nagaosa N. // Nature Commun. 2018. V. 9. P. 3740. https://doi.org/10.1038/s41467-018-05759-4
  4. Chang G., Wiede B.J., Schindler F. // Nat. Mater. 2018. V. 17. P. 978. https://doi.org/10.1038/s41563-018-0169-3
  5. Adhikari Y., Liu T., Wang H. // Nat. Commun. 2023. V. 14. P. 5163. https://doi.org/10.1038/s41467-023-40884-9
  6. Yang S.H. // Appl. Phys. Lett. 2020. 116. P. 120502. https://doi.org/10.1063/1.5144921
  7. Yang S.H., Naaman R., Stuart P.Y. et al. // Nat. Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9
  8. Michael K., Kantor-Urie N., Naaman R. et al. // Chem. Soc. Rev. 2016. V. 45. P. 6478. https://doi.org/10.1039/C6CS00369A
  9. Naaman R., Waldeck D.H. // Annu. Rev. Phys. Chem. 2015. V. 66. P. 263. https://doi.org/10.1146/annurev-physchem-040214-121554
  10. Yang S.H. // Appl. Phys. Lett. 2021. V. 16. P. 120502. https://doi.org/10.1063/5.0039147
  11. Waldeck D.H., Naaman R., Paltiel Y. // APL Mater. 2021. V. 9. P. 040902. https://doi.org/10.1063/5.0049150
  12. Wang X., Changjiang Y., Felser C. // Adv. Mater. 2023. V. 36. P. 2308746. https://doi.org/10.1002/adma.202308746
  13. Manchon A., Koo H.C., Nitta J. et al. // Nat. Mater. 2015. V. 14. P. 871. https://doi.org/10.1038/nmat4360
  14. Yeom J. // Acc. Mater. Res. 2021. V. 2. P. 471. https://doi.org/10.1021/accountsmr.1c00059
  15. Bercioux D., Lucignano P. // Rep. Prog. Phys. 2015. V. 78. P. 106001. https://doi.org/10.1088/0034-4885/78/10/106001
  16. Yan B. // Annu. Rev. Mater. Res. 2024. V. 54. P. 97. https://doi.org/10.1146/annurev-matsci-080222-033548
  17. Cohen M.L., Zettl A. // Phys. Today. 2010. V. 11. P. 34. https://doi.org/10.1063/1.3518210
  18. Golberg D., Bando Y., Tang A. et al. // Adv. Mater. 2007. V. 19. P. 2413. https://doi.org/10.1002/adma.200700179
  19. Chopra N.G., Luyken R.J., Cherrey K. et al. // Science. 1995. V. 269. P. 966. https://doi.org/10.1126/science.269.5226.966
  20. Maselugbo A.O., Harrison H.B., Alston J.R. // J. Mater. Res. 2022. V. 37. P. 4438. https://doi.org/10.1557/s43578-022-00672
  21. Zhang D., Zhang S., Yapici B. et al. // ACS Omega. 2021. V. 6. P. 20722. https://doi.org/10.1021/acsomega.1c02586
  22. Kim J.H., Pham T.V., Hwang J.H. et al. // Nano Convergence. 2018. V. 5. P. 17. https://doi.org/10.1186/s40580-018-0149-y
  23. Lee C.H., Wang J., Kayatsha S. et al. // Nanotechnology. 2008. V. 19. P. 455605. https://doi.org/10.1088/0957-4484/19/45/455605
  24. Xu T., Zhou Y., Tan X. // Adv. Funct. Mater. 2016. V. 27. P. 19. https://doi.org/10.1002/adfm.201603897
  25. Smith M.W., Jordan K.C., Park C. et al. // Nanotechnology. 2009. V. 20. P. 505604. https://doi.org/10.1088/0957-4484/20/50/505604
  26. Wang W.X., Bando M.S.Y., Golberg D. // Adv. Mater. 2010. V. 22. P. 4895. https://doi.org/10.1002/adma.201001829
  27. Ghassemi H.M., Lee C.H., Yap Y.K. // JOM. 2010. V. 62. P. 69. https://doi.org/10.1007/s11837-010-0063-1
  28. Blasé X., Rubio A., Louie S.G. et al. // EPL. 1994. V. 28. P. 335. https://doi.org/10.1209/0295-5075/28/5/007
  29. Ma R., Bando Y., Zhu H. et al. // J. Am. Chem. Soc. 2002. V. 124. P. 7672. https://doi.org/10.1021/ja026030e
  30. Lee C.H., Qin S., Savaikar M.A. et al. // Adv. Mater. 2013. V. 25. P. 4544. https://doi.org/10.1002/adma.201301339
  31. Qin J.-K., Liao P.-Y., Si M. et al. // Nat. Electron. 2020. V. 3. P. 141. https://doi.org/10.1038/s41928-020-0365-4
  32. Otsuka K., Sugihara T., Inoue T. et al. // Nano Res. 2023. V. 16. P. 12840. https://doi.org/10.1007/s12274-023-6241-6
  33. Shakerzadeh E. // Micro Nano Technol. 2016. P. 59. https://doi.org/10.1016/B978-0-323-38945-7.00004-3
  34. Rubio A., Corkill J., Cohen M.L. // Phys. Rev. B. 1994. V. 49. P. 5081. https://doi.org/10.1103/PhysRevB.49.5081
  35. Xiang H.J., Yang J.J., Hou G. et al. // Phys. Rev. B. 2003. V. 68. P. 035427. https://doi.org/10.1103/PhysRevB.68.035427
  36. Zhi C., Ueda S., Zeng H. et al. // J. Appl. Phys. 2013. V. 14. P. 054306. http://dx.doi.org/10.1063/1.4817430
  37. Guo G.Y., Lin J.C. // Phys. Rev. B. 2005. V. 71. P. 165402. https://doi.org/ 10.1103/PhysRevB.71.165402
  38. Ivanovskaya V.V., Enyashin A.N., Ivanovskii A.L. // Russ. J. Phys. Chem. 2006. V. 80. P. 372. https://doi.org/10.1134/S0036024406030125
  39. Jonuarti R., Yusfi M., Dewi T. et al. // J. Phys.: Conference Series. 2020. V. 1428. P. 012005. https://doi.org/10.1088/1742-6596/1428/1/012005
  40. Zhukovskii Y.F., Bellucci S., Piskunov S. et al. // Eur. Phys. J. B. 2009. V. 67. P. 519. https://doi.org/10.1140/epjb/e2009-00038-2
  41. Cho Y.J., Kim C.H., Kim H.S. et al. // Chem. Mater. 2009. V. 21. P. 136. https://doi.org/10.1021/cm802559m
  42. Wu R. Q., Liu L., Peng G.W. et al. // Appl. Phys. Lett. 2005. V. 86. P. 122510. http://dx.doi.org/10.1063/1.1890477
  43. D’yachkov P.N., Makaev D.V. // J. Phys. Chem. Solids. 2008. V. 70. P. 180. https://doi.org/10.1016/j.jpcs.2008.10.002
  44. Enyashin A., Seifert G., Ivanovskii A. // JETP Lett. 2004. V. 80. P. 608. https://doi.org/10.1134/1.1851644
  45. Kamal B.D., Pati R. // Sensors. 2014. V. 14. P. 17655. https://doi.org/10.3390/s140917655
  46. Hou S., Shen Z., Zhang J. et al. // Chem. Phys. Lett. 2004. V. 393. P. 179. https://doi.org/10.1016/j.cplett.2004.06.014
  47. Mpourmpakis G., Froudakis G.E. // Catal. Today. 2007. V. 120. P. 341. https://doi.org/10.1016/j.cattod.2006.09.023
  48. Baei M.T., Soltani A.R., Moradi A.V. et al. // Comput. Theor. Chem. 2011. V. 970. P. 30. https://doi.org/10.1016/j.comptc.2011.05.021
  49. Abbasi A.J. // Water Environ. Nanotechnol. 2019. V. 4. P. 147. https://doi.org/10.22090/jwent.2019.02.006
  50. Farhami N.A. // J. Appl. Organomet. Chem. 2022. V. 2. P. 163. https://doi.org/10.22034/jaoc.2022.154821
  51. Nemati-Kande E., Pourasadi A., Aghababaei F. et al. // Sci. Reports. 2022. V. 12. P. 19972. https://www.nature.com/articles/s41598-022-24200-x
  52. Ray K., Ananthavel S.P., Waldeck D.H. // Science. 1999. V. 283. P. 814. https://doi.org/10.1126/science.283.5403.814
  53. Göhler B., Hamelbeck V., Markus T.Z. // Science. 2011. V. 331. P. 894. https://doi.org/10.1126/science.1199339
  54. Yeganeh S., Ratner M.A., Medina E. // J. Chem. Phys. 2009. V. 131. P. 014707. https://doi.org/10.1063/1.3167404
  55. Eremko A.A., Loktev V.M. // Phys. Rev. B. 2013. V. 88. P. 165409. https://doi.org/10.1103/PhysRevB.88.165409
  56. Gutierrez R., Díaz E., Naaman R. // Phys. Rev. B. 2012. V. 85. P. 081404(R). https://doi.org/10.1103/PhysRevB.85.081404
  57. Gutierrez R., Díaz E., Gaul C. // J. Phys. Chem. C. 2013. V. 117. P. 22276. https://doi.org/10.1021/jp401705x
  58. Naaman R., Paltiel Y., Waldeck D.H. // Acc. Chem. Res. 2020. V. 53. P. 2659. https://doi.org/10.1021/acs.accounts.0c00485
  59. Michaeli K., Naaman R. // J. Phys. Chem. C. 2019. V. 123. P. 17043. https://doi.org/10.1021/acs.jpcc.9b05020
  60. Naaman R., Paltiel Y., Waldeck D.H. // J. Phys. Chem. Lett. 2020. V. 11. P. 3660. https://doi.org/10.1021/acs.jpclett.0c00474
  61. Fransson J. // J. Phys. Chem. Lett. 2019. V. 10. P. 7126. https://doi.org/10.1021/acs.jpclett.9b02929
  62. Fransson J. // J. Phys. Chem. Lett. 2022. V. 13. P. 808. https://doi.org/10.1021/acs.jpclett.1c03925
  63. Dalum. S., Hedegård P. // Nano Lett. 2019. V. 19. P. 5253. https://doi.org/10.1021/acs.nanolett.9b01707.
  64. D’yachkov P.N. Quantum chemistry of nanotubes: electronic cylindrical waves; CRC. Press London: Taylor and Francis, 2019. 212 p.
  65. D’yachkov P.N., Makaev D.V. // Phys. Rev. B. 2007. V. 76. P. 19541. https://doi.org/10.1103/PhysRevB.76.195411
  66. D’yachkov P.N., Makaev D.V. // Int. J. Quantum Chem. 2016. V. 116. P. 316. https://doi.org/10.1002/qua.25030
  67. D’yachkov P.N., D’yachkov E.P. // Appl. Phys. Lett. 2022. V. 120. P. 173101. https://doi.org/10.1063/5.0086902
  68. D’yachkov E.P., D’yachkov P.N. // J. Phys. Chem. C. 2019. V. 123. P. 26005. https://doi.org/10.1021/acs.jpcc.9b07610
  69. D’yachkov P.N., Krasnov D.O. // Chem. Phys. Lett. 2019. V. 720. P. 15. https://doi.org/10.1016/j.cplett.2019.02.006
  70. D’yachkov P.N. // J. Nanotechnol. Smart Mater. 2023. V. 9. P. 102. https://doi.org/10.1109/5.771073
  71. Дьячков П.Н., Кулямин П.А. // Журн. неорган. химии. 2024. Т. 69. № 9. С. 1319.
  72. Дьячков Е.П., Меринов В.Б., Дьячков П.Н. // Журн. неорган. химии. 2024. Т. 69. № 5. С. 757.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Electronic structure of a nanotube (7, 1): a - general view without CO splitting, b - electronic levels of the valence band and conduction band edges in enlarged scale, c, d - CO splitting of boundary levels in right-handed (rh) (c) and left-handed (lh) (d) nanotubes; π / hz = 5.73 at. units-1.

Жүктеу (258KB)
3. Fig. 2. General view of the zone structure of chiral BN nanotube (7, 2).

Жүктеу (171KB)
4. Fig. 3. Zone structure of the BN nanotube (7, 3); π / hz = 6.74 at. units-1.

Жүктеу (311KB)
5. Fig. 4. General view of the dispersion curves of BN nanotubes (7, 4), (7, 5) and (7, 6) for positive values of the wave vector; π / hz = 7.32, 7.92 and 7.55 at. units-1.

Жүктеу (321KB)

© Russian Academy of Sciences, 2025