Spin Properties of Chiral BN Nanotubes (7, n2)
- Авторлар: Dyachkov P.N.1, Dyachkov E.P.1
-
Мекемелер:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Шығарылым: Том 70, № 6 (2025)
- Беттер: 813-820
- Бөлім: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://clinpractice.ru/0044-457X/article/view/686415
- DOI: https://doi.org/10.31857/S0044457X25060099
- EDN: https://elibrary.ru/IBZMVZ
- ID: 686415
Дәйексөз келтіру
Аннотация
Using the nonempirical relativistic augmented cylindrical wave method, the dependences of the electronic structure of single-layer (n1, n2) BN nanotubes with n1 = 7 and 6 ≥ n2 ≥ 1 on chirality and spin are calculated. All nanotubes are wide-bandgap semiconductors with optical gaps equal to 3.6–4.6 eV and spin-orbit splittings of the top of the valence band and the minimum of the conduction band of 0.15–0.004 meV. The energies of spin splittings in right- and left-handed nanotubes coincide, and the spin directions are opposite. The (7, 1) nanotube is most suitable for selective spin transport of electrons, which can find application in spintronics elements.
Толық мәтін

Авторлар туралы
P. Dyachkov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: p_dyachkov@rambler.ru
Ресей, 31, Leninsky Ave., Moscow, 119991
E. Dyachkov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: p_dyachkov@rambler.ru
Ресей, 31, Leninsky Ave., Moscow, 119991
Әдебиет тізімі
- Rikken G.L., Avarvari N.J. // Phys. Chem. Lett. 2023. V. 14. P. 9727. https://doi.org/10.1021/acs.jpclett.3c02546
- Atzori M., Santanni F., Breslavetz I. // J. Am. Chem. Soc. 2020. V. 142. P. 13908. https://doi.org/10.1021/jacs.0c06166
- Tokura Y., Nagaosa N. // Nature Commun. 2018. V. 9. P. 3740. https://doi.org/10.1038/s41467-018-05759-4
- Chang G., Wiede B.J., Schindler F. // Nat. Mater. 2018. V. 17. P. 978. https://doi.org/10.1038/s41563-018-0169-3
- Adhikari Y., Liu T., Wang H. // Nat. Commun. 2023. V. 14. P. 5163. https://doi.org/10.1038/s41467-023-40884-9
- Yang S.H. // Appl. Phys. Lett. 2020. 116. P. 120502. https://doi.org/10.1063/1.5144921
- Yang S.H., Naaman R., Stuart P.Y. et al. // Nat. Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9
- Michael K., Kantor-Urie N., Naaman R. et al. // Chem. Soc. Rev. 2016. V. 45. P. 6478. https://doi.org/10.1039/C6CS00369A
- Naaman R., Waldeck D.H. // Annu. Rev. Phys. Chem. 2015. V. 66. P. 263. https://doi.org/10.1146/annurev-physchem-040214-121554
- Yang S.H. // Appl. Phys. Lett. 2021. V. 16. P. 120502. https://doi.org/10.1063/5.0039147
- Waldeck D.H., Naaman R., Paltiel Y. // APL Mater. 2021. V. 9. P. 040902. https://doi.org/10.1063/5.0049150
- Wang X., Changjiang Y., Felser C. // Adv. Mater. 2023. V. 36. P. 2308746. https://doi.org/10.1002/adma.202308746
- Manchon A., Koo H.C., Nitta J. et al. // Nat. Mater. 2015. V. 14. P. 871. https://doi.org/10.1038/nmat4360
- Yeom J. // Acc. Mater. Res. 2021. V. 2. P. 471. https://doi.org/10.1021/accountsmr.1c00059
- Bercioux D., Lucignano P. // Rep. Prog. Phys. 2015. V. 78. P. 106001. https://doi.org/10.1088/0034-4885/78/10/106001
- Yan B. // Annu. Rev. Mater. Res. 2024. V. 54. P. 97. https://doi.org/10.1146/annurev-matsci-080222-033548
- Cohen M.L., Zettl A. // Phys. Today. 2010. V. 11. P. 34. https://doi.org/10.1063/1.3518210
- Golberg D., Bando Y., Tang A. et al. // Adv. Mater. 2007. V. 19. P. 2413. https://doi.org/10.1002/adma.200700179
- Chopra N.G., Luyken R.J., Cherrey K. et al. // Science. 1995. V. 269. P. 966. https://doi.org/10.1126/science.269.5226.966
- Maselugbo A.O., Harrison H.B., Alston J.R. // J. Mater. Res. 2022. V. 37. P. 4438. https://doi.org/10.1557/s43578-022-00672
- Zhang D., Zhang S., Yapici B. et al. // ACS Omega. 2021. V. 6. P. 20722. https://doi.org/10.1021/acsomega.1c02586
- Kim J.H., Pham T.V., Hwang J.H. et al. // Nano Convergence. 2018. V. 5. P. 17. https://doi.org/10.1186/s40580-018-0149-y
- Lee C.H., Wang J., Kayatsha S. et al. // Nanotechnology. 2008. V. 19. P. 455605. https://doi.org/10.1088/0957-4484/19/45/455605
- Xu T., Zhou Y., Tan X. // Adv. Funct. Mater. 2016. V. 27. P. 19. https://doi.org/10.1002/adfm.201603897
- Smith M.W., Jordan K.C., Park C. et al. // Nanotechnology. 2009. V. 20. P. 505604. https://doi.org/10.1088/0957-4484/20/50/505604
- Wang W.X., Bando M.S.Y., Golberg D. // Adv. Mater. 2010. V. 22. P. 4895. https://doi.org/10.1002/adma.201001829
- Ghassemi H.M., Lee C.H., Yap Y.K. // JOM. 2010. V. 62. P. 69. https://doi.org/10.1007/s11837-010-0063-1
- Blasé X., Rubio A., Louie S.G. et al. // EPL. 1994. V. 28. P. 335. https://doi.org/10.1209/0295-5075/28/5/007
- Ma R., Bando Y., Zhu H. et al. // J. Am. Chem. Soc. 2002. V. 124. P. 7672. https://doi.org/10.1021/ja026030e
- Lee C.H., Qin S., Savaikar M.A. et al. // Adv. Mater. 2013. V. 25. P. 4544. https://doi.org/10.1002/adma.201301339
- Qin J.-K., Liao P.-Y., Si M. et al. // Nat. Electron. 2020. V. 3. P. 141. https://doi.org/10.1038/s41928-020-0365-4
- Otsuka K., Sugihara T., Inoue T. et al. // Nano Res. 2023. V. 16. P. 12840. https://doi.org/10.1007/s12274-023-6241-6
- Shakerzadeh E. // Micro Nano Technol. 2016. P. 59. https://doi.org/10.1016/B978-0-323-38945-7.00004-3
- Rubio A., Corkill J., Cohen M.L. // Phys. Rev. B. 1994. V. 49. P. 5081. https://doi.org/10.1103/PhysRevB.49.5081
- Xiang H.J., Yang J.J., Hou G. et al. // Phys. Rev. B. 2003. V. 68. P. 035427. https://doi.org/10.1103/PhysRevB.68.035427
- Zhi C., Ueda S., Zeng H. et al. // J. Appl. Phys. 2013. V. 14. P. 054306. http://dx.doi.org/10.1063/1.4817430
- Guo G.Y., Lin J.C. // Phys. Rev. B. 2005. V. 71. P. 165402. https://doi.org/ 10.1103/PhysRevB.71.165402
- Ivanovskaya V.V., Enyashin A.N., Ivanovskii A.L. // Russ. J. Phys. Chem. 2006. V. 80. P. 372. https://doi.org/10.1134/S0036024406030125
- Jonuarti R., Yusfi M., Dewi T. et al. // J. Phys.: Conference Series. 2020. V. 1428. P. 012005. https://doi.org/10.1088/1742-6596/1428/1/012005
- Zhukovskii Y.F., Bellucci S., Piskunov S. et al. // Eur. Phys. J. B. 2009. V. 67. P. 519. https://doi.org/10.1140/epjb/e2009-00038-2
- Cho Y.J., Kim C.H., Kim H.S. et al. // Chem. Mater. 2009. V. 21. P. 136. https://doi.org/10.1021/cm802559m
- Wu R. Q., Liu L., Peng G.W. et al. // Appl. Phys. Lett. 2005. V. 86. P. 122510. http://dx.doi.org/10.1063/1.1890477
- D’yachkov P.N., Makaev D.V. // J. Phys. Chem. Solids. 2008. V. 70. P. 180. https://doi.org/10.1016/j.jpcs.2008.10.002
- Enyashin A., Seifert G., Ivanovskii A. // JETP Lett. 2004. V. 80. P. 608. https://doi.org/10.1134/1.1851644
- Kamal B.D., Pati R. // Sensors. 2014. V. 14. P. 17655. https://doi.org/10.3390/s140917655
- Hou S., Shen Z., Zhang J. et al. // Chem. Phys. Lett. 2004. V. 393. P. 179. https://doi.org/10.1016/j.cplett.2004.06.014
- Mpourmpakis G., Froudakis G.E. // Catal. Today. 2007. V. 120. P. 341. https://doi.org/10.1016/j.cattod.2006.09.023
- Baei M.T., Soltani A.R., Moradi A.V. et al. // Comput. Theor. Chem. 2011. V. 970. P. 30. https://doi.org/10.1016/j.comptc.2011.05.021
- Abbasi A.J. // Water Environ. Nanotechnol. 2019. V. 4. P. 147. https://doi.org/10.22090/jwent.2019.02.006
- Farhami N.A. // J. Appl. Organomet. Chem. 2022. V. 2. P. 163. https://doi.org/10.22034/jaoc.2022.154821
- Nemati-Kande E., Pourasadi A., Aghababaei F. et al. // Sci. Reports. 2022. V. 12. P. 19972. https://www.nature.com/articles/s41598-022-24200-x
- Ray K., Ananthavel S.P., Waldeck D.H. // Science. 1999. V. 283. P. 814. https://doi.org/10.1126/science.283.5403.814
- Göhler B., Hamelbeck V., Markus T.Z. // Science. 2011. V. 331. P. 894. https://doi.org/10.1126/science.1199339
- Yeganeh S., Ratner M.A., Medina E. // J. Chem. Phys. 2009. V. 131. P. 014707. https://doi.org/10.1063/1.3167404
- Eremko A.A., Loktev V.M. // Phys. Rev. B. 2013. V. 88. P. 165409. https://doi.org/10.1103/PhysRevB.88.165409
- Gutierrez R., Díaz E., Naaman R. // Phys. Rev. B. 2012. V. 85. P. 081404(R). https://doi.org/10.1103/PhysRevB.85.081404
- Gutierrez R., Díaz E., Gaul C. // J. Phys. Chem. C. 2013. V. 117. P. 22276. https://doi.org/10.1021/jp401705x
- Naaman R., Paltiel Y., Waldeck D.H. // Acc. Chem. Res. 2020. V. 53. P. 2659. https://doi.org/10.1021/acs.accounts.0c00485
- Michaeli K., Naaman R. // J. Phys. Chem. C. 2019. V. 123. P. 17043. https://doi.org/10.1021/acs.jpcc.9b05020
- Naaman R., Paltiel Y., Waldeck D.H. // J. Phys. Chem. Lett. 2020. V. 11. P. 3660. https://doi.org/10.1021/acs.jpclett.0c00474
- Fransson J. // J. Phys. Chem. Lett. 2019. V. 10. P. 7126. https://doi.org/10.1021/acs.jpclett.9b02929
- Fransson J. // J. Phys. Chem. Lett. 2022. V. 13. P. 808. https://doi.org/10.1021/acs.jpclett.1c03925
- Dalum. S., Hedegård P. // Nano Lett. 2019. V. 19. P. 5253. https://doi.org/10.1021/acs.nanolett.9b01707.
- D’yachkov P.N. Quantum chemistry of nanotubes: electronic cylindrical waves; CRC. Press London: Taylor and Francis, 2019. 212 p.
- D’yachkov P.N., Makaev D.V. // Phys. Rev. B. 2007. V. 76. P. 19541. https://doi.org/10.1103/PhysRevB.76.195411
- D’yachkov P.N., Makaev D.V. // Int. J. Quantum Chem. 2016. V. 116. P. 316. https://doi.org/10.1002/qua.25030
- D’yachkov P.N., D’yachkov E.P. // Appl. Phys. Lett. 2022. V. 120. P. 173101. https://doi.org/10.1063/5.0086902
- D’yachkov E.P., D’yachkov P.N. // J. Phys. Chem. C. 2019. V. 123. P. 26005. https://doi.org/10.1021/acs.jpcc.9b07610
- D’yachkov P.N., Krasnov D.O. // Chem. Phys. Lett. 2019. V. 720. P. 15. https://doi.org/10.1016/j.cplett.2019.02.006
- D’yachkov P.N. // J. Nanotechnol. Smart Mater. 2023. V. 9. P. 102. https://doi.org/10.1109/5.771073
- Дьячков П.Н., Кулямин П.А. // Журн. неорган. химии. 2024. Т. 69. № 9. С. 1319.
- Дьячков Е.П., Меринов В.Б., Дьячков П.Н. // Журн. неорган. химии. 2024. Т. 69. № 5. С. 757.
Қосымша файлдар
