Mixed Ligand Zinc Complexation with Ornithine and Histidine in Aqueous Solution

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The formation of mixed-ligand complexes of various compositions in the Zn–L-histidine (His)–L-ornithine (Orn) system has been studied by pH-metry, calorimetry, and NMR spectroscopy. The thermodynamic parameters (log K, ΔrG0 ΔrH, ΔrS) of the reactions of their formation at 298.15 K and ionic strength I = 0.5 (KNO3) have been calculated. Based on the comparative analysis of thermodynamic parameters, the most probable method for the coordination of amino acid residues in mixed complexes has been proposed.

Sobre autores

M. Nikitina

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: pyreu@mail.ru
153025, Ivanovo, Russia

M. Gruzdev

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: pyreu@mail.ru
153025, Ivanovo, Russia

D. Pyreu

Ivanovo State University

Autor responsável pela correspondência
Email: pyreu@mail.ru
153025, Ivanovo, Russia

Bibliografia

  1. Yamauchi O., Odani A. // J. Chem. Soc., Dalton Trans. 2002. P. 3411. https://doi.org/10.1039/B202385G
  2. Yamauchi O., Odani A. // Inorg. Chim. Acta. 1985. V. 100. P. 165. https://doi.org/10.1016/S0020-1693(00)88304-8
  3. Chaga G.S. // J. Biochem. Biophys. Methods. 2001. V. 49. P. 313.
  4. Gaberc-Porekar V., Menart V. // J. Biochem. Biophys. Methods. 2001. V. 49. P. 335.
  5. Yang P., Zheng W., Hua Z. // Inorg. Chem. 2000. V. 39. № 24. P. 5454. https://doi.org/10.1021/ic0000146
  6. Raman N., Sakthivel A., Raja J.D. et al. // Russ. J. Inorg. Chem. 2008. V. 53. P. 213. https://doi.org/10.1134/S0036023608020113
  7. Demidov V.N., Kas’yanenko N.A., Antonov V.S. et al. // Russ. J. Gen. Chem. 2012. V. 82. P. 602. https://doi.org/10.1134/S1070363212030401
  8. Nair M.S., Arasu P.T., Sutha S.G. et al. // J. Indian Chem. Soc. 1998. V. 37A. P. 1084. http://nopr.niscair.res.in/handle/123456789/40379
  9. Nair M.S., Pillai M.S., Ramalingam S.K. // J. Chem. Soc., Dalton Trans. 1986. P. 1. https://doi.org/10.1039/DT9860000001
  10. Никитина М.Г., Пырэу Д.Ф. // Журн. неорган. химии. 2021. Т. 66. № 10. С. 1482. https://doi.org/10.1134/S0036023621100120
  11. Бородин В.А., Васильев В.П., Козловский Е.В. Математические задачи химической термодинамики. Новосибирск: Наука, 1985. С. 219.
  12. Pettit L.D. // Pure Appl. Chem. 1984. V. 56. P. 247. https://doi.org/10.1351/pac198456020247
  13. Yamauchi O., Odani A. // Pure Appl. Chem. 1996. V. 68. P. 469. https://doi.org/10.1351/pac199668020469
  14. Farkas E., Gergely A., Kas E. // J. Inorg. Nucl. Chem. 1981. V. 43. P. 1591. https://doi.org/10.1016/0022-1902(81)80343-0
  15. Sovago I., Kiss T., Gergely A. // J. Chem. Soc., Dalton Trans. 1978. P. 964.
  16. Васильев В.П. Термодинамические свойства растворов электролитов. М.: Высш. школа, 1982. С. 201.
  17. Гаравин В.А. // Дис. … канд. хим. наук. Иваново: ИХТИ, 1983.
  18. Gergely A., Farkas E., Nagypál I. et al. // J. Inorg. Nucl. Chem. 1978. V. 40. P. 1709. https://doi.org/10.1016/0022-1902(78)80366-2
  19. Amico P., Arena G., Daniele P. et al. // Inorg. Chem. 1981. V. 20. P. 772. https://doi.org/10.1021/ic50217a027
  20. Pyreu D., Alekseeva E., Gridchin S. // Thermochim. Acta. 2019. V. 680. P. 178335. https://doi.org/10.1016/j.tca.2019.178335
  21. Couves L.D., Hague D.N., Moreton A.D. // J. Chem. Soc., Dalton Trans. 1992. P. 217. https://doi.org/10.1039/DT9920000217
  22. Kiss T., Sovago I., Gergely A. // Pure Appl. Chem. 1991. V. 63. P. 597.
  23. Sjoberg S. // Pure Appl. Chem. 1997. V. 69. P. 1549.
  24. Zhou L., Li S., Su Y. et al. // J. Phys. Chem. B. 2013. V. 117. P. 8954. https://doi.org/10.1021/jp4041937
  25. Dalosto S.D., Calvo R., Pizarro J.L., Arriortua M.I. // J. Phys. Chem. A. 2001. V. 105. P. 1074. https://doi.org/10.1021/jp003167n
  26. Ferrer P., Jiménez-Villacorta F., Rubio-Zuazo J. et al. // J. Phys. Chem. B. 2014. V. 118. P. 2842. https://doi.org/10.1021/jp411655e
  27. Kistenmacher T.J. // Acta Crystallogr., Sect. B. 1972. V. 28. P. 1302. https://doi.org/10.1107/S0567740872004133
  28. Kretsinger R.H., Cotton F.A., Bryan R.F. // Acta Crystallogr. 1963. V. 16. P. 651 https://doi.org/10.1107/S0365110X63001705
  29. Harding M.M., Cole S.J. // Acta Crystallogr. 1963. V. 16. P. 643. https://doi.org/10.1107/S0365110X63001699
  30. Bottari E., Festa M. // J. Coord. Chem. 1990. V. 22. P. 237. https://doi.org/10.1080/00958979009408220
  31. Powell K., Brown P., Byrne R. et al. // Pure Appl. Chem. 2013. V. 85. P. 2249.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (69KB)
3.

Baixar (78KB)
4.

Baixar (76KB)
5.

Baixar (44KB)
6.

Baixar (39KB)
7.

Baixar (37KB)

Declaração de direitos autorais © М.Г. Никитина, М.С. Груздев, Д.Ф. Пырэу, 2023