Thermodynamic characteristics of copper(I) perfluorocyclohexanoate C6F11COOCu
- Autores: Malkerova I.P.1, Kayumova D.B.1, Yambulatov D.S.1, Khoroshilov А.V.1, Sidorov А.А.1, Alikhanyan А.S.1
 - 
							Afiliações: 
							
- Kurnakov Institute of General and Inorganic Chemistry of the RAS
 
 - Edição: Volume 69, Nº 5 (2024)
 - Páginas: 765-770
 - Seção: ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ
 - URL: https://clinpractice.ru/0044-457X/article/view/666545
 - DOI: https://doi.org/10.31857/S0044457X24050154
 - EDN: https://elibrary.ru/YEJUHL
 - ID: 666545
 
Citar
Texto integral
Resumo
The [Сu—C6F11COOAg] system was studied using thermogravimetry, differential scanning calorimetry and mass spectrometry methods. It has been established that in the temperature range 370–445 K, a solid-phase exchange reaction occurs in the condensed phase of the system with the formation of C6F11COOCu and silver. The enthalpy of this reaction was found to be ΔrHo298.15 = –17.5 ± 4.0 and the standard enthalpy of formation of a crystalline copper complex ΔfHo298.15 = –2769 ± 25 kJ/mol. Sublimation of the copper complex is accompanied by the transition into the gas phase of dimeric (C6F11COOCu)2 ΔsHoТ = 134.4 ± 7.2 kJ/mol and a small amount of tetrameric molecules (C6F11COOCu)4. The standard enthalpy of formation of the dimer complex in the gas phase was calculated to be ΔfHo298.15 = –5404 ± 26 kJ/mol. The paper examines the possibility of exothermic interaction of copper perfluorocyclohexanoate with metallic copper in the condensed phase.
Sobre autores
I. Malkerova
Kurnakov Institute of General and Inorganic Chemistry of the RAS
							Autor responsável pela correspondência
							Email: alikhan@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
D. Kayumova
Kurnakov Institute of General and Inorganic Chemistry of the RAS
														Email: alikhan@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
D. Yambulatov
Kurnakov Institute of General and Inorganic Chemistry of the RAS
														Email: alikhan@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
А. Khoroshilov
Kurnakov Institute of General and Inorganic Chemistry of the RAS
														Email: alikhan@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
А. Sidorov
Kurnakov Institute of General and Inorganic Chemistry of the RAS
														Email: alikhan@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
А. Alikhanyan
Kurnakov Institute of General and Inorganic Chemistry of the RAS
														Email: alikhan@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Сыркин В.Г. CVD-метод. Химическая парофазная металлизация. М.: Наука, 2000. 496 с.
 - Grodzicki A., Łakomska I., Piszczek P. et al. // Coord. Chem. Rev. 2005. V. 249. P. 2232. https://doi.org/10.1016/j.ccr.2005.05.026
 - Jakob A., Shen Y., Wächtler T. et al. // Z. Anorg. Allg. Chem. 2008. V. 634. P. 2226. https://doi.org/10.1002/zaac.200800189
 - Mothes R., Rüffer T., Shen Y. et al. // Dalton Trans. 2010. V. 39. P. 11235. https://doi.org/10.1039/C0DT00347F
 - Choi K.-K., Rhee S.-W. // Thin Solid Films. 2001. V. 397. P. 70. https://doi.org/10.1016/S0040-6090(01)01406-7
 - Jang J., Chung S., Kang H. et al. // Thin Solid Films. 2016. V. 600. P. 157. https://doi.org/10.1016/j.tsf.2016.01.036
 - Huo J., Solanki R., McAndrew J. // J. Mater. Res. 2002. V. 17. P. 2394. https://doi.org/10.1557/JMR.2002.0350
 - Li Z., Barry S.T., Gordon R.G. // Inorg. Chem. 2005. V. 44. P. 1728. https://doi.org/10.1021/ic048492u
 - Hlina J., Reboun J., Hamacek A. // Scripta Mater. 2020. V. 176. P. 23. https://doi.org/10.1016/j.scriptamat.2019.09.029
 - Cory N.J., Visser E., Chamier J. et al. // Appl. Surf. Sci. 2022. V. 576. P. 151822. https://doi.org/10.1016/j.apsusc.2021.151822
 - Yildirim G., Yücel E. // J. Mater. Sci. Mater. Electron. 2022. V. 33. P. 19057. https://doi.org/10.1007/s1085-022-08743-3
 - Good W., Scott D., Waddington G. // J. Phys. Chem. 1956. V. 60. P. 1080. https://doi.org/10.1021/j150542a014
 - Morozova E.A., Dobrokhotova Zh.V., Alikhanyan A.S. // J. Therm. Anal. Calorim. 2017. V. 130. P. 2211. https://doi.org/10.1007/s10973-017-6583-y
 - Kayumova D.B., Malkerova I.P., Yambulatov D.S. et al. // Russ.J. Coord. Chem. 2024. V. 50. No. 3. P. 211
 - Gribchenkova N.A., Alikhanyan A.S. // J. Alloys Compd. 2019. V. 778. P. 77. https://doi.org/10.1016/j.jallcom.2018.11.136
 - Термические константы веществ / Под ред. Глушко В.П. М.: ВИНИТИ, 1972. Т. VI. Ч. I.
 - Chase M.W., Jr., Curnutt J.L., Downey J.R., Jr. et al. // J. Phys. Chem. Ref. Data. 1982. V. 11. P. 695. https://doi.org/10.1063/1.555666
 - Ehlert T.C., Wang J.S. // J. Phys. Chem. 1977. V. 81. P. 2069. https://doi.org/10.1021/j100537a005
 - Ehlert T.C. // J. Phys. Chem. 1969. V. 73. P. 949. https://doi.org/10.1021/j100724a032
 - Chase M.W., Jr. // J. Phys. Chem. Ref. Data. 1998. V. 9. P. 1.
 - Kolesov V.P., Zenkov I.D., Skuratov S.M. // Russ. J. Phys. Chem. 1962. V. 36. P. 45.
 - Термические константы веществ / Под ред. Глушко В.П. М.: ВИНИТИ, 1970. Т. IV. Ч. I.
 - Amphlett J.C., Dacey J.R., Pritchard G.O. // J. Phys. Chem. 1971. V. 75. P. 3024. https://doi.org/10.1021/j100688a028
 - Смирнова Н.Н., Лебедев Б.В. // Высокомолекулярные соединения. 1990. Т. 32. № 12. С. 2356.
 
Arquivos suplementares
				
			
						
						
					
						
						
									


