Изучение восстановления комплексов кобальта(III) in situ c помощью спектроскопии ЯМР

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Предложен подход, позволяющий осуществлять мониторинг процессов редокс-активации лекарственных препаратов в комплексах кобальта(III) in situ с помощью спектроскопии ЯМР. С использованием предложенного подхода исследовано восстановление гетеролептических комплексов кобальта(III), содержащих молекулу 6,7-дигидроксикумарина в качестве модельного лекарственного препарата. Показано, что замена бипиридинового лиганда в комплексе кобальта(III) на фенантролин приводит к значительному увеличению скорости редокс-активируемого высвобождения лекарственного препарата.

Об авторах

И. А. Никовский

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Email: khakina90@ineos.ac.ru
Россия, Москва

Д. А. Бабакина

Российский химико-технологический университет им. Д.И. Менделеева

Email: khakina90@ineos.ac.ru
Россия, Москва

Г. Л. Денисов

Институт элементоорганических соединений им. А.Н. Несмеянова РАН; Московский государственный технический университет им. Н.Э. Баумана

Email: khakina90@ineos.ac.ru
Россия, Москва; Россия, Москва

Ю. В. Нелюбина

Институт элементоорганических соединений им. А.Н. Несмеянова РАН; Московский государственный технический университет им. Н.Э. Баумана

Email: khakina90@ineos.ac.ru
Россия, Москва; Россия, Москва

Е. А. Хакина

Институт элементоорганических соединений им. А.Н. Несмеянова РАН; Московский государственный технический университет им. Н.Э. Баумана

Автор, ответственный за переписку.
Email: khakina90@ineos.ac.ru
Россия, Москва; Россия, Москва

Список литературы

  1. Brown J.M., Wilson W.R. // Nat. Rev. Cancer. 2004. V. 4. P. 437.
  2. Zhang P., Sadler P.J. // Eur. J. Inorg. Chem. 2017. P. 1541.
  3. Areas E.S., Paiva J.L.A., Ribeiro F.V. et al. // Eur. J. Inorg. Chem. 2019. V. 37. P. 4031.
  4. Renfrew A.K., O’Neill E.S., Hambley T.W. et al. // Coord. Chem. Rev. 2018. V. 375. P. 221.
  5. Palmeira-Mello M.V., Caballero A.B., Ribeiro J.M. et al. // J. Inorg. Biochem. 2020. V. 211. P. 111211.
  6. Jungwirth U., Kowol C.R., Keppler B.K. et al. // Antioxid. Redox. Signal. 2011. V. 15. P. 1085.
  7. Graf N., Lippard S.J. // Adv. Drug. Deliv. Rev. 2012. V. 64 P. 993.
  8. Ware D.C., Siim B.G., Robinson K.G. et al. // Inorg. Chem. 1991. V. 30. P. 3750.
  9. Craig P.R., Brothers P.J., Clark G.R. et al. // Dalton Trans. 2004. V. 4. P. 611.
  10. Failes T.W., Cullinane C., Diakos C.I. et al. // Chem. Eur. J. 2007. V. 13. P. 2974.
  11. Karnthaler-Benbakka M.S.C., Groza M.S.D., Kryeziu M.K. et al. // Angew. Chem. Int. Ed. 2014. V. 53. P. 12930.
  12. Souza I.S.A., Santana S.S., Gomez J.G. et al. // Dalton Trans. 2020. V. 49. P. 16425.
  13. Sarkar T., Kumar A., Sahoo S. et al. // Inorg. Chem. 2021. V. 60. P. 6649.
  14. Vlcek A.A. // Inorg. Chem. 1967. V. 6. P. 1425.
  15. Ma D.-L., Wu C., Cheng S.-S. et al. // Int. J. Mol. Sci. 2019. V. 20. P. 341.
  16. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
  17. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. A-ppl. Cryst. 2009. V. 42. P. 339.-
  18. Stamatatos T.C., Bell A., Cooper P. et al. // Inorg. Chem. Commun. 2005. V. 8. P. 533.
  19. Alvarez S. // Chem. Rev. 2015. V. 115. P. 13447.

© Е.А. Хакина, И.А. Никовский, Д.А. Бабакина, Г.Л. Денисов, Ю.В. Нелюбина, 2022