COMPUTING UNIMODULAR MATRICES OF POWER TRANSFORMATIONS
- Autores: BRUNO A.D.1, AZIMOV A.A.2
- 
							Afiliações: 
							- Institute of Applied Mathematics, Russian Academy of Sciences
- Samarkand State University
 
- Edição: Nº 1 (2023)
- Páginas: 38-47
- Seção: КОМПЬЮТЕРНАЯ АЛГЕБРА
- URL: https://clinpractice.ru/0132-3474/article/view/675761
- DOI: https://doi.org/10.31857/S013234742301003X
- EDN: https://elibrary.ru/GRRDJF
- ID: 675761
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
An algorithm for solving the following problem is described. Let m < n integer vectors in the n-dimensional real space be given. Their linear span forms a linear subspace L in R. It is required to find a unimodular matrix such that the linear transformation defined by it takes the subspace L into a coordinate subspace. Computer programs implementing the proposed algorithms and the power transforms for which they are designed are described.
Sobre autores
A. BRUNO
Institute of Applied Mathematics, Russian Academy of Sciences
														Email: abruno@keldysh.ru
				                					                																			                												                								Moscow, Russia						
A. AZIMOV
Samarkand State University
							Autor responsável pela correspondência
							Email: Azimov_Alijon_Akhmadovich@mail.ru
				                					                																			                												                								Samarkand, Uzbekistan						
Bibliografia
- Хинчин А.Я. Цепные дроби. М.: Физматгиз, 1961.
- Euler L. De relatione inter ternas pluresve quantitates instituenda // 1785, All Works 591.
- Брюно А.Д. Локальный метод нелинейного анализа дифференциальных уравнений. М.: Наука, 1979. 252 с.
- Брюно А.Д. Вычисление основных единиц числовых колец с помощью обобщенной цепной дроби // Программирование. 2019. № 2. С. 17–31. https://doi.org/10.1134/S0132347419020055
- Thompson I. Understanding Maple. Cambridge University Press, 2016. 228 p.
- The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.1.1). 2020. https://doi.org/10.5281/zenodo. 4066866. https://www.sagemath.org.
- Meurer A., Smith C.P., [et al.]. SymPy: symbolic computing in Python // PeerJ Computer Science. 2017. V. 3. e103. ISSN 2376–5992. DOI: . URL: https://doi.org/10.7717/ peerj-cs.103.
- Брюно А.Д. Степенная геометрия в алгебраических и дифференциальных уравнениях. М.: Физматлит, 1998. 288 с.
- Брюно А.Д., Батхин А.Б. Разрешение алгебраической сингулярности алгоритмами степенной геометрии // Программирование. 2012. № 2. С. 11–28.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
