Твердые продукты захвата N2O5 на покрытии из метановой сажи

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Современные глобальные модели, позволяющие давать долговременный прогноз химического состава атмосферы Земли, требуют детальной информации о константах скорости множества элементарных химических реакций. Кроме того, актуальными являются данные о составе продуктов этих реакций. В настоящей работе методом масс-спектрометрии высокого разрешения определены твердые продукты нитрования сажи горения метана окислом азота N2O5. Установлена высокая реакционная способность N2O5 по отношению к полициклическим ароматическим соединениям класса CnHm, содержащимся в исходной саже. Показано, что среди твердых продуктов нитрования присутствуют соединения классов нитропроизводных полициклических ароматических веществ, ароматические кислоты и их сложные эфиры. По своему составу и классам соединений продукты нитрования сажи реагентом N2O5 близки к продуктам аналогичного нитрования окислом азота NO2.

Об авторах

И. В. Сулименков

Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук

Москва, Россия

В. В. Филатов

Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук

Москва, Россия

В. С. Брусов

Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук

Москва, Россия

Е. В. Апарина

Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук

Москва, Россия

В. В. Зеленов

Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук

Email: v.zelenov48@gmail.com
Москва, Россия

Список литературы

  1. Stone D., Evans M.J., Walker H. et al. // Atmos. Chem. Phys. 2014. V. 14. № 3. P. 1299. https://doi.org/10.5194/acp-14-1299-2014
  2. Wild R.J., Edwards P.M., Bates T.S. et al. // Ibid. 2016. V. 16. № 2. P. 573. https://doi.org/10.5194/acp-16-573-2016
  3. Wagner N.L., Dubé W.P., Washenfelder R.A. et al. // Atmos. Meas. Tech. 2011. V. 4. № 6. P. 1227. https://doi.org/10.5194/amt-4-1227-2011
  4. Ларин И.К., Алоян А.Е., Ермаков А.Н. // Хим. физика. 2021. Т. 40. № 5. С. 86. https://doi.org/10.31857/S0207401X21050095
  5. Brown S.S., Stutz J. // Chem. Soc. Rev. 2012. V. 41. № 19. P. 6405. https://doi.org/10.1039/c2cs35181a
  6. Chang W.L., Bhave P.V., Brown S.S. et al. // Aerosol Sci. Technol. 2011. V. 45. № 6. P. 665. https://doi.org/10.1080/02786826.2010.551672
  7. Zhou W., Zhao J., Ouyang B. et al. // Atmos. Chem. Phys. 2018. V. 18. № 16. P. 11581. https://doi.org/10.5194/acp-18-11581-2018
  8. Wagner N.L., Riedel T.P., Young C.J. et al. // J. Geophys. Res. Atmos. 2013. V. 118. № 16. P. 9331. https://doi.org/10.1002/jgrd.50653
  9. Berner A., Sidla S., Galambos Z. et al. // Ibid. 1996. V. 101. № D14. P. 19559. https://doi.org/10.1029/95JD03425
  10. Pohl K., Cantwell M., Herckes P., Lohmann R. // Atmos. Chem. Phys. 2014. V. 14. № 14. P. 7431. https://doi.org/10.5194/acp-14-7431-2014
  11. Bond T.C., Streets D.G., Yarber K.F. et al. // J. Geophys. Res. Atmos. 2004. V. 109. № D14. P. 14203. https://doi.org/10.1029/2003JD003697
  12. Wang R., Tao S., Shen H. et al. // Environ. Sci. Technol. 2014. V. 48. № 12. P. 6780. https://doi.org/10.1021/es5021422
  13. Klimont Z., Kupiainen K., Heyes C. et al. // Atmos. Chem. Phys. 2017. V. 17. № 14. P. 8681. https://doi.org/10.5194/acp-17-8681-2017
  14. Brouwer L., Rossi M.J., Golden D.M. // J. Phys. Chem. 1986. V. 90. № 19. P. 4599. https://doi.org/10.1021/j100410a025
  15. Longfellow C.A., Ravishankara A.R., Hanson D.R. // J. Geophys. Res. Atmos. 2000. V. 105. № D19. P. 24345. https://doi.org/10.1029/2000JD900297
  16. Saathoff H., Naumann K.-H., Riemer N. et al. // Geophys. Res. Lett. 2001. V. 28. № 10. P. 1957. https://doi.org/10.1029/2000GL012619
  17. Karagulian F., Rossi M.J. // J. Phys. Chem. A. 2007. V. 111. № 10. P. 1914. https://doi.org/10.1021/jp0670891
  18. Зеленов В.В., Апарина Е.В., Каштанов С.А., Шардакова Э.В. // Хим. физика. 2016. Т. 35. № 4. С. 78. https://doi.org/10.7868/S0207401X16040129
  19. Зеленов В.В., Апарина Е.В. // Хим. физика. 2022. Т. 41. № 12. С. 81. https://doi.org/10.31857/S0207401X22120111
  20. Травин С.О., Громов О.Б., Утробин Д.В., Рощин А.В. // Хим. физика. 2019. Т. 38. № 11. С. 5. https://doi.org/10.1134/S0207401X19110116
  21. Зеленов В.В., Апарина Е.В., Каштанов С.А., Шардакова Э.В. // Хим. физика. 2015. Т. 34. № 3. С. 87. https://doi.org/10.7868/S0207401X15030140
  22. Sander S.P., Abbatt J.P.D., Barker J.R. et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. NASA JPL Publication 10-6. № 17. Pasadena: JPL, 2011. http://jpldataeval.jpl.nasa.gov
  23. Akhter M.S., Chughtai A.R., Smith D.M. // Appl. Spectrosc. 1985. V. 39. № 1. P. 143. https://doi.org/10.1366/0003702854249114
  24. Siegmann K., Hepp H., Sattler K. // Combust. Sci. Technol. 1995. V. 109. № 1–6. P. 165. https://doi.org/10.1080/00102209508951900
  25. Stadler D., Rossi M.J. // Phys. Chem. Chem. Phys. 2000. V. 2. № 23. P. 5420. https://doi/org/10.1039/b005680o
  26. Onischuk A.A., di Stasio S., Karasev V.V. et al. // J. Aerosol Sci. 2003. V. 34. № 4. P. 383. https://doi.org/10.1016/S0021-8502(02)00215-X
  27. Cain J.P., Gassman P.L., Wang H., Laskin A. // Phys. Chem. Chem. Phys. 2010. V. 12. № 20. P. 5206. https://doi.org/10.1039/b924344e
  28. Roy R., Jan R., Gunjal G. et al. // Atmos. Environ. 2019. V. 210. P. 47. https://doi.org/10.1016/j.atmosenv.2019.04.034
  29. Öktem B., Tolocka M.P., Zhao B. et al. // Combust. and Flame. 2005. V. 142. № 4. P. 364. https://doi.org/10.1016/j.combustflame.2005.03.016
  30. Liu Y., Liu C., Ma J. et al. // Phys. Chem. Chem. Phys. 2010. V. 12. № 36. P. 10896. https://doi.org/10.1039/c0cp00402b
  31. Burkholder J.B., Sander S.P., Abbatt J.P.D. et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. NASA JPL Publication 19–5. № 19. Pasadena: JPL, 2019. http://jpldataeval.jpl.nasa.gov
  32. Akhter M.S., Chughtai A.R., Smith D.M. // J. Phys. Chem. 1984. V. 88. № 22. P. 5334. https://doi.org/10.1021/j150666a046
  33. Smith D.M., Chughtai A.R. // J. Geophys. Res. 1996. V. 101. № D14. P. 19607. https://doi.org/10.1029/95JD03032
  34. Kirchner U., Scheer V., Vogt R. // J. Phys. Chem. A. 2000. V. 104. № 39. P. 8908. https://doi.org/10.1021/jp0005322
  35. Han C., Liu Y., He H. // Atmos. Environ. 2013. V. 64. № 2. P. 270. https://doi.org/10.1016/j.atmosenv.2012.10.008
  36. Зеленов В.В., Апарина Е.В., Козловский В.И. и др. // Хим. физика. 2019. Т. 38. № 1. С. 86. https://doi.org/10.1134/S0207401X19010163
  37. Еганов А.А., Кардонский Д.А., Сулименков И.В. и др. // Хим. физика. 2023. Т. 42. № 4. С. 81. https://doi.org/10.31857/S0207401X23040064
  38. Зеленов В.В., Апарина Е.В. // Хим. физика. 2023. Т. 42. № 1. С. 73. https://doi.org/10.31857/S0207401X23010144
  39. Kozlovski V, Brusov V., Sulimenkov I. et al. // Rapid Commun. MassSpectrom. 2004. V. 18. № 7. P. 780. https://doi.org/10.1002/rcm.1405
  40. www.sisweb.com/software/ms/nist.htm
  41. Разников В.В., Разникова М.О., Пихтелев А.Р. и др. // Хим. физика. 2025. Т. 44. № 9. С. 3.
  42. Разников В.В., Разникова М.О., Чудинов А.В. и др. // Хим. физика. 2025. Т. 44. № 9. С. 22.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025