Вызванный ответ мозга человека на начало движения звука (motion-onset response)
- Авторы: Шестопалова Л.Б.1, Семенова В.В.1, Петропавловская Е.А.1
-
Учреждения:
- Федеральное государственное бюджетное учреждение науки Институт физиологии им. И.П. Павлова РАН
- Выпуск: Том 55, № 3 (2024)
- Страницы: 22-44
- Раздел: Статьи
- URL: https://clinpractice.ru/0301-1798/article/view/676202
- DOI: https://doi.org/10.31857/S0301179824030022
- EDN: https://elibrary.ru/BBNUMN
- ID: 676202
Цитировать
Аннотация
В обзоре всесторонне рассматриваются особенности суммарного вызванного ответа мозга человека на начало движения звукового стимула, так называемого motion-onset response (MOR). Описаны получение и интерпретация этого компонента слуховых вызванных потенциалов, зависимость MOR от скорости и направления движения, от разных пространственных характеристик звука. Приведены исследования реорганизации колебательной активности, лежащей в основе MOR, показавшие, что плавное движение звука вызывает подстройку фазы колебаний дельта-альфа-диапазона к моменту начала движения. Рассмотрен вопрос о влиянии межсенсорной аудио-визуальной интеграции на обработку информации о движении. Компонент MOR как коррелят процессов интеграции пространственной информации может дать новые сведения об активации мозговых структур, которые уже на раннем предсознательном этапе обеспечивают ориентацию человека в пространстве и его адаптацию к изменяющейся акустической среде.
Полный текст

Об авторах
Л. Б. Шестопалова
Федеральное государственное бюджетное учреждение науки Институт физиологии им. И.П. Павлова РАН
Автор, ответственный за переписку.
Email: shestopalovalb@infran.ru
Россия, 199034, Санкт-Петербург
В. В. Семенова
Федеральное государственное бюджетное учреждение науки Институт физиологии им. И.П. Павлова РАН
Email: shestopalovalb@infran.ru
Россия, 199034, Санкт-Петербург
Е. А. Петропавловская
Федеральное государственное бюджетное учреждение науки Институт физиологии им. И.П. Павлова РАН
Email: shestopalovalb@infran.ru
Россия, 199034, Санкт-Петербург
Список литературы
- Альтман Я.А. Локализация движущегося источника звука. Л.: Наука, 1983. 176 с.
- Альтман Я.А. Пространственный слух. СПб.: Институт физиологии им. И.П. Павлова РАН, 2011. 311 с.
- Варфоломеев А.Л., Старостина Л.В. Слуховые вызванные потенциалы человека при иллюзорном движении звукового образа // Российский физиологический журнал им.Сеченова. 2006. Т. 92. № 9. С. 1046–1057.
- Петропавловская Е.А., Шестопалова Л.Б., Вайтулевич С.Ф. Проявления инерционности слуховой системы при локализации движущихся звуковых образов малой длительности // Физиология человека. 2010. Т. 36. № 4. С. 1–10.
- Семенова В.В. Окно интеграции про-странственной слуховой информации у человека: электрофизиологические и психофизические аспекты восприятия: дис. ... канд. биол. наук. СПб.: Институт физиологии им. И.П. Павлова РАН, 2022. 118 с.
- Семенова В.В., Шестопалова Л.Б., Петропавловская Е.А., Никитин Н.И. Константы восприятия отсроченного движения звуковых стимулов // Успехи физиологических наук. 2020. Т. 51. № 2. С. 55–67. https://doi.org/10.31857/S0301179820020095
- Семенова В.В., Шестопалова Л.Б., Петропавловская Е.А., Саликова Д.А., Никитин Н.И. Латентность вызванного потенциала как показатель интегрирования акустической информации о движении звука // Физиология человека. 2022. Т.48. № 4. С. 57–68. https://doi.org/10.31857/S0131164622040105
- Шестопалова Л.Б., Петропавловская Е.А., Семенова В.В., Никитин Н.И. Вызванные потенциалы на звуковые стимулы с отсроченным началом движения в условиях активного и пассивного прослушивания // Журнал высшей нервной деятельности. 2016. Т. 66. № 5. С. 565–578. https://doi.org/10.7868/S0044467716050099
- Шестопалова Л.Б., Петропавловская Е.А., Семенова В.В., Никитин Н.И. Ритмическая активность мозга человека, связанная с движением звуковых стимулов // ЖВНД. 2020. Т. 70. № 5. С. 616–634. https://doi.org/10.31857/S0044467720050111.
- Ahissar M., Ahissar E., Bregman H., Vaadia E. Encoding of sound-source location and movement: Activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex // Journal of Neurophysiology. 1992. V. 67. P. 203–215. https://doi.org/ 10.1152/jn.1992.67.1.203
- Altman J.A. Are there neurons detecting direction of sound source motion? // Experimental Neurology. 1968. V. 22. P. 13–25. https://doi.org/10.1016/0014-4886(68)90016-2
- Altman, J.A., Vaitulevich S.Ph. Auditory image movement in evoked potentials // Electroencephalography and Clinical Neurophysiology. 1990. V. 75. № 4. P. 323–333. https://doi.org/10.1016/0013-4694(90)90110-6
- Altman J.A., Viskov O.V. Discrimination of perceived movement velocity for fused auditory image in dichotic stimulation // The Journal of the Acoustical Society of America. 1977. V. 61. № 3. P. 816–819. https://doi.org/10.1016/0013-4694(90)90110-6
- Altmann C.F., Ueda R., Bucher B. et. al. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography // NeuroImage. 2017. V. 159. P. 185–194. https://doi.org/10.1016/j.neuroimage.2017.07.055
- Arnal L.H., Giraud A.L. Cortical oscillations and sensory predictions // Trends Cogn. Sci. 2012. V. 16. № 7. P. 390–398. https://doi.org/10.1016/j.tics.2012.05.003
- Bach M., Ullrich D. Motion adaptation governs the shape of motion-evoked cortical potentials // Vision Res. 1994. V. 34. P. 1541–1547. https://doi.org/10.1016/0042-6989(94)90111-2
- Barrett D.J.K., Hall D.A. Response preferences for “what” and “where” in human non-primary auditory cortex // Neuroimage. 2006. V. 32. P. 968–977. https://doi.org/10.1016/j.neuroimage.2006.03.050
- Baumgart F., Gaschler-Markefski B., Woldorff M.G., Heinze H.J., Schleich H. A movement-sensitive area in auditory cortex // Nature. 1999. V. 400. P. 724–726. https://doi.org/10.1038/23390
- Beer A.L., Röder B. Attending to visual or auditory motion affects perception within and across modalities: an event-related potential study // Eur J Neurosci. 2005. V. 21. № 4. P. 1116–30. https://doi.org/10.1111/j.1460-9568.2005.03927.x
- Bidet-Caulet A., Bertrand O. Dynamics of a temporo-fronto-parietal network during sustained spatial or spectral auditory processing // Journal of Cognitive Neuroscience. 2005. V. 17. № 11. P. 1691–1703. https://doi.org/10.1162/089892905774589244
- Bremmer F., Schlack A., Shah N.J. et al. Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys // Neuron. 2001. V. 29. № 1. P. 287–296. https://doi.org/10.1016/s0896-6273(01)00198-2
- Briley P.M., Kitterick P.T., Summerfield A.Q. Evidence for Opponent Process Analysis of Sound Source Location in Humans // J. Assoc. Res. Otolaryngol. 2013. V. 14. № 1. P. 83–101. https://doi.org/10.1007/s10162-012-0356-x
- Brunetti M., Belardinelli P., Caulo M. et al. Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study // Hum. Brain Mapp. V. 2005. № 26. P. 251–261. https://doi.org/10.1002/hbm.20164
- Carlile S., Best V. Discrimination of sound source velocity by human listeners // The Journal of the Acoustical Society of America. 2002. V. 111. № 26. P. 1026–1035. https://doi.org/10.1121/1.1436067
- Carlile S., Leung J. The perception of Auditory motion // Trends in Hearing. 2016. V. 20. P. 1–19. https://doi.org/10.1177/2331216516644254
- Chandler D.W., Grantham D.W. Minimum audible movement angle in the horizontal plane as a function of stimulus frequency and bandwidth, source azimuth, and velocity // The Journal of Acoustical Society of America. 1992. V. 91. № 3. P. 1624–1636. https://doi.org/10.1121/1.402443
- Chaplin T.A., Rosa M.G.P., Lui L.L. Auditory and Visual Motion Processing and Integration in the Primate Cerebral Cortex // Front. Neural Circuits. 2018. V. 12. № 93. https://doi.org/10.3389/fncir.2018.00093
- Deouell L.Y., Bentin S., Giard M.H. Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators // Psychophysiology. 1998. V. 35. P. 355–365.
- Dietz M.J., Friston K.J., Mattingley J.B., Roepstorff A., Garrido M.I. Effective connectivity reveals right-hemisphere dominance in audiospatial perception: implications for models of spatial neglect // J. Neurosci. 2014. V. 34. № 14. P. 5003–5011. https://doi org/10.1523%2FJNEUROSCI.3765-13.2014
- Ducommun C.Y., Murray M.M., Thut G. et al. Segregated processing of auditory motion and auditory location: an ERP mapping study // NeuroImage. 2002. V. 16. P. 76–88. https://doi.org/10.1006/nimg.2002.1062
- Fan Z.-T., Zhao Z.-H., Sharma M. et. al. Acoustic change complex evoked by horizontal sound location change in young adults with normal hearing // Frontiers in Neuroscience. 2022. V. 16. № 908989. https://doi.org/10.3389/fnins.2022.908989
- Freeman C. A., Leung J., Wufong E. et. al. Discrimination Contours for Moving Sounds Reveal Duration and Distance Cues Dominate Auditory Speed Perception // PLoS ONE. V. 9. № 7. e102864. https://doi.org/10.1371/journal.pone.0102864
- Getzmann S. Effects of velocity and motion-onset delay on detection and discrimination of sound motion // Hearing Research. 2008. V. 246. P. 44–51. https://doi.org/10.1016/j.heares.2008.09.007
- Getzmann S. Effect of auditory motion velocity on reaction time and cortical processes // Neuropsychologia. 2009. V. 47. P. 2625–2633.
- Getzmann S. Auditory motion perception: onset position and motion direction are encoded in discrete processing stages // European Journal of Neuroscience. 2011. V. 33. P. 1339–1350. https://doi.org/10.1111/j.1460-9568.2011.07617.x
- Getzmann S., Lewald J., Guski R. Representational momentum in spatial hearing // Perception. 2004. V. 33. P. 591–600. https://doi.org/10.1068/p5093
- Getzmann S., Lewald J. Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion // Hearing Research. 2010a. V. 259. P. 44–54. https://doi.org/10.1016/j.heares.2009.09.021
- Getzmann S., Lewald J. Shared cortical systems for processing of horizontal and vertical sound motion // J. Neurophysiol. 2010b. V. 103. P. 1896–1904. http://dx.doi.org/10.1152/jn.00333.2009
- Getzmann S., Lewald J. The effect of spatial adaptation on auditory motion processing // Hearing Research. 2011. V. 272. № 1–2. P. 21–29. https://doi.org/10.1016/j.heares.2010.11.005
- Getzmann S., Lewald J. Cortical processing of change in sound location: Smooth motion versus discontinuous displacement // Brain Research. 2012. V. 1466. P. 119–127. https://doi.org/10.1016/j.brainres.2012.05.033
- Getzmann S., Lewald J. Modulation of Auditory Motion Processing by Visual Motion // Journal of Psychophysiology. 2014. V. 28. P. 82–100. https://doi.org/10.1027/0269-8803/a000113
- Grantham D.W. Detection and discrimination of simulated motion of auditory targets in the horizontal plane // The Journal of the Acoustical Society of America. 1986. V. 79. № 6. P. 1939–1949. https://doi.org/10.1121/1.393201
- Grantham D.W. Auditory motion perception: Snapshots revisited // Binaural and spatial hearing in real and virtual environments / Eds. R.H. Gilkey, T.R. Anderson. Mahwah, NJ: Lawrence Erlbaum Associates, 1997. P. 295–313.
- Griffiths T.D., Bench C.J., Frackowiak R.S.J. Human cortical areas selectively activated by apparent sound motion // Current Biology. 1994. V. 4. P. 892–895. https://doi.org/10.1016/s0960-9822(00)00198-6
- Griffiths T.D., Green G.G., Rees A., Rees G. Human brain areas involved in the analysis of auditory movement // Human Brain Mapping. 2000. V. 9. P. 72–80. https://doi.org/10.1002/(sici)1097-0193(200002)9:2%3C72::aid-hbm2%3E3.0.co;2-9
- Griffiths T.D., Rees G., Rees A. et al. Right parietal cortex is involved in the perception of sound movement in humans // Nature Neuroscience. 1998. V. 1. P. 74–79. https://doi.org/10.1038/276
- Grzeschik R., Böckmann-Barthel M., Mühler R., Hoffmann M.B. Motion-onset auditory-evoked potentials critically depend on history // Experimental Brain Research. 2010. V. 203. P. 159–168. https://doi.org/10.1007/s00221-010-2221-7
- Grzeschik R., Böckmann-Barthel M., Mühler R., Verhey J.L., Hoffmann, M.B. Direction-specific adaptation of motion-onset auditory evoked potentials // European Journal of Neuroscience. 2013. V. 38. P. 2557–2565. https://doi.org/10.1111/ejn.12264
- Grzeschik R., Lewald J., Verhey J.L., Hoffmann M.B., Getzmann S. Absence of direction-specific cross-modal visual-auditory adaptation in motion-onset ERPs // European Journal of Neuroscience. 2016. V. 43. № 1. P. 66–77. https://doi.org/10.1111/ejn.13102
- Haegens S., Golumbic E.Z. Rhythmic facilitation of sensory processing: A critical review // Neurosci. Biobehav. Rev. 2018. V. 86, P. 150–165. https://doi.org/10.1016/j.neubiorev.2017.12.002.
- Hall D.A., Hart H.C., Johnsrude I.S. Relationships between human auditory cortical structure and function // Audiology and Neuro-Otology. 2003. V. 8. № 1. P. 1–18. https://doi.org/10.1159/000067894
- Harris J.D., & Sergeant R.L. Monaural-binaural minimum audible angles for a moving sound source // Journal of Speech and Hearing Research. 1971. V. 14. P. 618–629. https://doi.org/10.1044/jshr.1403.618
- Heinrich S.P. A primer on motion visual evoked potentials // Documenta Ophthalmologica. 2007. V. 114. P. 83–105. https://doi.org/10.1007/s10633-006-9043-8
- Herrmann C.S., Grigutsch M., Busch N.A. EEG oscillations and wavelet analysis // Event-related potentials: а methods handbook / Ed. T.C. Handy. Cambridge, London: MIT Press, 2005. P. 229–259.
- Huang S., Chang W.-T., Belliveau J.W., Hämäläinen M., Ahveninen J. Lateralized parietotemporal oscillatory phase synchronization during auditory selective attention // Neuroimage. 2014. V. 86. P. 461–469. https://doi.org/10.1016/j.neuroimage.2013.10.043
- Jerger J., Estes R. Asymmetry in event-related potentials to simulated auditory motion in children, young adults, and seniors // Journal of the American Academy of Audiology. 2002. V. 13. № 1. P. 1–13.
- Kaiser J., Lutzenberger W., Preissl H., Ackermann H., Birbaumer N. Right-hemisphere dominance for the processing of sound-source lateralization // J. Neurosci. 2000. V. 20. P. 6631–6639. https://doi.org/10.1523/JNEUROSCI.20-17-06631.2000
- Kaya U., Kafaligonul H. Audiovisual interactions in speeded discrimination of a visual event // Psychophysiology. 2021. V. 58. № 4. e13777. https://doi.org/10.1111/psyp.13777
- Kaya U., Yildirim F.Z., Kafaligonul H. The involvement of centralized and distributed processes in sub-second time interval adaptation: an ERP investigation of apparent motion // EJN. 2017. V. 46. № 8. P. 2325–2338. https://doi.org/10.1111/ejn.13691.
- Kayser C., Petkov C.I., Remedios R., Logothetis N.K. Multisensory Influences on Auditory Processing: Perspectives from fMRI and Electrophysiology // The Neural Bases of Multisensory processes / Eds. M.M. Murray, M.T. Wallace. Boca Raton, London, N.Y.: CRC press, 2012. P. 99–114.
- Klimesch W., Sauseng P., Hanslmayr S., Gruber W., Freunberger R. Event-related phase reorganization may explain evoked neural dynamics // Neurosci. Biobehav. Rev. 2007. V. 31. P. 1003–1016. http://doi.org/10.1016/j.neubiorev.2007.03.005.
- Koelewijn T., Bronkhorst A., Theeuwes J. Attention and the multiple stages of multisensory integration: A review of audiovisual studies // Acta Psychologica. 2010. V. 134. P. 372–384. https://doi.org/10.1016/j.actpsy.2010.03.010
- Kreegipuu К., Allik J. Detection of motion onset and offset: reaction time and visual evoked potential analysis // Psychological Research. 2007. V. 71. № 6. P. 703–708. https://doi.org/10.1007/s00426-006-0059-1
- Kreitewolf J., Lewald J., Getzmann S. Effect of attention on cortical processing of sound motion: An EEG study // NeuroImage. 2011. V. 54. P. 2340–2349. https://doi.org/10.1016/j.neuroimage.2010.10.031
- Krumbholz K., Schönwiesner M., Rübsamen R. et.al. Hierarchical processing of sound location and motion in the human brainstem and planum temporale // Eur. J. Neurosci. 2005. V. 21. P. 230–238. https://doi.org/10.1111/j.1460-9568.2004.03836.x
- Krumbholz K., Schönwiesner M., von Cramon D.Y. et.al. Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe // Cerebral Cortex. 2005. V. 15. P. 317–324. https://doi.org/10.1093/cercor/bhh133
- Krumbholz K., Hewson-Stoate N., Schönwiesner M. Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices // J. Neurophysiol. 2007. V. 97. P. 1649–1655. https://doi.org/10.1152/jn.00560.2006
- Lewis J.W., Beauchamp M.S., DeYoe E.A. A comparison of visual and auditory motion processing in human cerebral cortex // Cerebral Cortex. 2000. V. 10. № 9. P. 873–88. https://doi.org/10.1093/cercor/10.9.873
- Locke S.M., Leung J., Carlile S. Sensitivity to Auditory Velocity Contrast // Scientific Reports. 2016. V. 6. № 27725. https://doi.org/10.1038/srep27725.
- López-Moliner J., Soto-Faraco S. Vision affects how fast we hear sounds move // Journal of Vision. 2007. V. 7. № 12. P. 1–7. https://doi.org/10.1167/7.12.6
- Magezi D.A., Krumbholz K. Evidence for opponent channel coding of interaural time differences in human auditory cortex // J. Neurophysiol. 2010. V. 104. № 4. P. 1997–2007. https://doi.org/10.1152/jn.00424.2009
- Makeig S., Debener S., Onton J., Delorme A. Mining event-related brain dynamics // Trends Cogn. Sci. 2004. V. 8. № 5. P. 204–210. http://doi.org/10.1016/j.tics.2004.03.008
- Makeig S., Westerfield M., Jung T.-P. et al. Dynamic brain sources of visual evoked responses // Science. 2002. V. 295. P. 690–694. https://doi.org/10.1126/science.1066168
- Mäkelä J.P., McEvoy L. Auditory evoked fields to illusory sound source movements // Exp. Brain Res. 1996. V. 110. P. 446–454. https://doi.org/10.1007/BF00229144
- Martin B.A., Boothroyd A. Cortical, auditory, event-related potentials in response to periodic and aperiodic stimuli with the same spectral envelope // Ear Hear. 1999. V. 20. № 1. P. 33–44. https://doi.org/10.1097/00003446-199902000-00004
- Martin B.A., Boothroyd A. Cortical, auditory, evoked potentials in response to changes of spectrum and amplitude // J. Acoust. Soc. Am. 2000. V. 107. P. 2155–2161. https://doi.org/10.1121/1.428556
- Martin B.A., Boothroyd A., Ali D., Leach-Berth T. Stimulus presentation strategies for eliciting the acoustic change complex: increasing efficiency // Ear Hear. 2010. V. 31. № 3. P. 356–366. https://doi.org/10.1097/AUD.0b013e3181ce6355
- Maurer J.P., Bach M. Isolating motion responses in visual evoked potentials by pre-adapting flicker-sensitive mechanisms // Exp. Brain Res. 2003. V. 151. P. 536–541. https://doi.org/10.1007/s00221-003-1509-2
- Ostroff J.M., Martin B.A., Boothroyd A. Cortical evoked response to acoustic change within a syllable // Ear Hear. 1998. V. 19. P. 290–297. https://doi.org/10.1097/00003446-199808000-00004
- Palomäki K., Alku P., Mäkinen V., May P., Tiitinen H. Sound localization in the human brain: neuromagnetic observations // NeuroReport. 2000. V. 11. P. 1535–1538.
- Papesh M.A., Folmer R.L., Gallun F.J. Cortical Measures of Binaural Processing Predict Spatial Release from Masking Performance // Front. Hum. Neurosci. 2017. V. 11. № 124. https://doi.org/10.3389/fnhum.2017.00124.
- Patzwahl D.R., Zanker J.M. Mechanisms of human motion perception: combining evidence from evoked potentials, behavioural performance and computational modeling // European Journal of Neuroscience. 2000. V. 12. P. 273–282. https://doi.org/10.1046/j.1460-9568.2000.00885.x
- Patzwahl D.R., Zanker J.M., Altenmüller E.O. Cortical potentials reflecting motion processing in humans // Vis. Neurosci. 1994. V. 11. P. 1135–1147. https://doi.org/10.1017/s0952523800006945
- Pavani F., Macaluso E., Warren J.D., Driver J., Griffiths T.D. A common cortical substrate activated by horizontal and vertical sound movement in the human brain // Curr. Biol. 2002. V. 12. P. 1584–1590. https://doi.org/10.1016/S0960-9822(02)01143-0
- Perrin F., Pernier J., Bertrand O., Echallier J.F. Spherical splines for scalp potential and current density mapping // Electroencephalography and Clinical Neurophysiology. 1989. V. 72. P. 184–187.
- Perrott D.R., Musicant A. Rotating tones and binaural beats // Journal of the Acoustical Society of America. 1977. V. 61. № 5. P. 1288–1292. https://doi.org/10.1121/1.381430
- Rahne T., Böckmann M., von Specht H., Sussman E.S. Visual cues can modulate integration and segregation of objects in auditory scene analysis // Brain Res. 2007. V. 1144. P. 127–135. https://doi.org/10.1016/j.brainres.2007.01.074
- Rahne T., Böckmann-Barthel M. Visual cues release the temporal coherence of auditory objects in auditory scene analysis // Brain Res. 2009. V. 1300. P. 125–134. https://doi.org/10.1016/j.brainres.2009.08.086.
- Recanzone G.H. Interactions of auditory and visual stimuli in space and time // Hear. Res. 2009. V. 258. P. 89–99. https://doi.org/10.1016/j.heares.2009.04.009.
- Roggerone V., Vacher J., Tarlao C. et al. Auditory motion perception emerges from successive sound localizations integrated over time // Sci. Rep. 2019. V. 9. № 16437. https://doi.org/10.1038/s41598-019-52742-0
- Saberi K., Hafter E.R. Experiments on Auditory Motion Discrimination // Binaural and spatial hearing in real and virtual environments / Eds. R.H. Gilkey, T.R. Anderson. Mahwah, NJ: Lawrence Erlbaum Associates, 1997. P. 315–329.
- Saberi K., Perrott D.R. Minimum audible movement angles as a function of sound source trajectory // Journal of the Acoustical Society of America. 1990. V. 88. № 6. P. 2639–2644. https://doi.org/10.1121/1.399984
- Salminen N.H., May P.J.C., Alku P., Tiitinen H. A Population Rate Code of Auditory Space in the Human Cortex // PLoS ONE. 2009. V. 4. № 10. e7600. https://doi.org/10.1371/journal.pone.0007600
- Salminen N.H., Tiitinen H., Miettinen I., Alku P., May P.J. Asymmetrical representation of auditory space in human cortex // Brain.Res. 2010. V. 1306. P. 93–99. https://doi.org/10.1016/j.brainres.2009.09.095
- Salminen N.H., Tiitinen H., May P.J.C. Auditory spatial processing in the human cortex // Neuroscientist. 2012. V. 18. № 6. P. 602–612. https://doi.org/10.1177/1073858411434209
- Sams M., Hämäläinen M., Hari R., McEvoy L. Human auditory cortical mechanisms of sound lateralization: I. Interaural time differences within sound // Hear. Res. 1993. V. 67. № 1–2. P. 89–97. https://doi.org/10.1016/0378-5955(93)90236-t
- Sarrou M., Schmitz P.M., Hamm N., Rübsamen R. Sound frequency affects the auditory motion-onset response in humans // Experimental Brain Research. 2018. V. 236. P. 2713–2726. https://doi.org/10.1007/s00221-018-5329-9
- Schlykowa L., van Dijk B.W., Ehrenstein W.H. Motion-onset visual-evoked potentials as a function of retinal eccentricity in man // Cognit. Brain Res. 1993. V. 1. P. 169–174. https://doi.org/10.1016/0926-6410(93)90024-y
- Schmiedchen K., Freigang C., Rübsamen R., Richter N. A comparison of visual and auditory representational momentum in spatial tasks // Attention, Perception, & Psychophysics. 2013. V. 75. № 7. P. 1507–1519. https://doi.org/10.3758/s13414-013-0495-0
- Schönwiesner M., Krumbholz K., Rübsamen R., Fink G.R., von Cramon D.Y. Hemispheric asymmetry for auditory processing in the human auditory brainstem, thalamus, and cortex // Cereb.Cortex. 2007. V. 17. P. 492–499. https://doi.org/10.1093/cercor/bhj165
- 101.Senna, I., Parise C. V., Ernst M. O. Hearing in slow motion: Humans underestimate the speed of moving sounds // Sci. Rep. 2015. V. 5. № 14054. https://doi.org/10.1038/srep14054
- Senna I., Parise C.V., Ernst M.O. Modulation frequency as a cue for auditory speed perception // Proc. R. Sci. 2017. V. 284. № 20170673. http://dx.doi.org/10.1098/rspb.2017.0673
- Shestopalova L.B., Petropavlovskaia E.A., Semenova V.V., Nikitin N.I. Lateralization of brain responses to auditory motion: A study using single-trial analysis // Neuroscience Res. 2021а. V. 162. P. 31–44. https://doi.org/10.1016/j.neures.2020.01.007
- Shestopalova L.B., Petropavlovskaia E.A., Semenova V.V., Nikitin N.I. Brain Oscillations evoked by sound motion // Brain Research. 2021b. V. 1752. № 147232. https://doi.org/10.1016/j.brainres.2020.147232
- Shestopalova L.B., Petropavlovskaia E.A., Salikova D.A., Semenova V.V. Temporal integration of sound motion: Motion-onset response and perception // Hearing Research. 2024. V. 441. № 108922. https://doi.org/10.1016/j.heares.2023.108922
- Soto-Faraco S., Kingstone A., Spence C. Multisensory contributions to the perception of motion // Neuropsychologia. 2003. V. 41. P. 1847–1862. https://doi.org/10.1016/s0028-3932(03)00185-4
- Soto-Faraco S., Spence C., Kingstone A. Crossmodal dynamic capture: congruency effects in the perception of motion across sensory modalities // J. Exp. Psychol. Hum. Perform. Percept. 2004. V. 30. № 2. P. 330–345. https://doi.org/10.1037/0096-1523.30.2.330
- Soto-Faraco S., Väljamäe A. Multisensory Interactions during Motion Perception // The Neural Bases of Multisensory processes / Eds. M.M. Murray, M.T. Wallace. Boca Raton, London, N.Y.: CRC press, 2012. P. 583–602.
- Spitzer M.W., Semple M.N. Interaural phase coding in auditory midbrain: influence of dynamic stimulus features // Science. 1991. V. 254. № 5032. P. 721–724. https://doi.org/10.1126/science.1948053
- Stekelenburg J.J. & Vroomen J. Neural correlates of audiovisual motion capture // Experimental Brain Research. 2009. V. 198. P. 383–390.
- Teshiba T.M., Ling J., Ruhl D.A. et.al. Evoked and intrinsic asymmetries during auditory attention: implications for the contralateral and neglect models of functioning // Cereb. Cortex. 2013. V. 23. № 3. P. 560–569. https://doi.org/ 10.1093/cercor/bhs039
- Tiitinen H., Salminen N.H., Palomäki K. et.al. Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex // Neurosci. Lett. 2006. V. 396. P. 17–22. https://doi.org/10.1016/j.neulet.2005.11.018
- Toronchuk J.M., Stumpf E., Cynader M.S. Auditory cortex neurons sensitive to correlates of auditory motion: underlying mechanisms // Experimental Brain Research. 1992. V. 88. P. 169–180. https://doi.org/10.1007/BF02259138
- Vroomen J., de Gelder B. Visual motion influences the contingent auditory motion aftereffect // Psychol. Sci. 2003. V. 14. № 4. P. 357–361. https://doi.org/10.1111/1467-9280.24431
- Warren J.D., Griffiths T.D. Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain // J. Neuroscience. 2003. V. 23. № 13. P. 5799–5804. https://doi.org/10.1523/JNEUROSCI.23-13-05799.2003
- Warren J.D., Zielinski B.A., Green G.G., Rauschecker J.P., Griffiths T.D. Perception of sound-source motion by the human brain // Neuron. 2002. V. 34. № 1. P. 139–148. https://doi.org/10.1016/s0896-6273(02)00637-2
- Weisz N., Obleser J. Synchronisation signatures in the listening brain: a perspective from non-invasive neuroelectrophysiology // Hear. Res. 2014. V. 307. P. 16–28. http://doi.org/10.1016/j.heares.2013.07.009
- Xiang J., Chuang S., Wilson D. et.al. Sound motion evoked magnetic fields // Electroencephalography and Clinical Neurophysiology. 2002. V. 113. P. 1–9. https://doi.org/10.1016/s1388-2457(01)00709-x
- Zatorre R.J., Mondor T.A., Evans A.C. Auditory attention to space and frequency activates similar cerebral systems // NeuroImage. 1999. V. 10. № 5. P. 544–554. https://doi.org/10.1006/nimg.1999.0491
- Zatorre R.J., Bouffard M., Ahad P., Belin P. Where is ‘where’ in the human auditory cortex? // Nat. Neurosci. 2002. V. 5. № 9. P. 905–909. https://doi.org/10.1038/nn904
- Zoefel B., ten Oever S., Sack A.T. The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses // Front. Neurosci. 2018. V. 12. № 95. https://doi.org/10.3389/fnins.2018.00095
Дополнительные файлы
