Electric Explosion of Thin Wires (a Paradigm Shift)

封面

如何引用文章

全文:

详细

Over the many decades of studying the electric explosion of thin wires (EEW), researchers havedeveloped and accepted certain notions about this process. Despite the lack of proof behind certain establishedassertions and, sometimes, their contradiction with the results of recent experiments, they are stillwidely used to describe and interpret new data. In the first place, this concerns the concept that the EEW isa fast evaporation of metal as a result of the dissipation of Joule energy inside it. Another fundamental notionthat is used during the analysis of the experimental results and in model calculations is the uniform distributionof matter along the cross section of the wire core during the explosion. To date, the nature and mechanismof the appearance of strata, i.e., the periodicity observed in many images of the EEW, remain unexplained.Using the traditional notions of the EEW, even in experiments conducted at a high level, does notallow one to correctly interpret the obtained results and, as a whole, does not facilitate the progress in understandingthe complicated physics of the process of wire explosion. Therefore, the traditional concepts of theEEW have long required a revision. This work summarizes the results of modern research in this area andconsiders its relation to the previous works. It also proposes new approaches to the studies of the EEWdynamics and to the understanding of the processes of energy transformation in matter during its rapid heatingby the electric current.

全文:

受限制的访问

作者简介

V. Romanova

Lebedev Physical Institute, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: vmr@inbox.ru
俄罗斯联邦, Moscow, 119991

I. Tilikin

Lebedev Physical Institute, Russian Academy of Sciences

Email: vmr@inbox.ru
俄罗斯联邦, Moscow, 119991

A. Ter-Oganesyan

Lebedev Physical Institute, Russian Academy of Sciences

Email: vmr@inbox.ru
俄罗斯联邦, Moscow, 119991

A. Mingaleev

Lebedev Physical Institute, Russian Academy of Sciences

Email: vmr@inbox.ru
俄罗斯联邦, Moscow, 119991

T. Shelkovenko

Lebedev Physical Institute, Russian Academy of Sciences

Email: vmr@inbox.ru
俄罗斯联邦, Moscow, 119991

S. Pikuz

Lebedev Physical Institute, Russian Academy of Sciences

Email: vmr@inbox.ru
俄罗斯联邦, Moscow, 119991

参考

  1. Bennet F.D. High-Temperature Exploding Wires / In Progress in High Temperature Physics and Chemistry / Ed. by Carl A. Rouse. Pergamon Press, 1968. V. 2. P. 3.
  2. Müller W. / In Exploding Wires / Ed. by W.G. Chace and H.K. Moore. New York: Plenum Press, 1959. V. 1. P. 186.
  3. Pikuz S.A., Shelkovenko T.A., Hoyt C.L., Douglass J.D., Tilikin I.N., Mingaleev A.R., Romanova V.M., and Hammer D.A. // IEEE Transactions on Plasma Science. 2015. V. 43. N. 8. 2520. doi: 10.1109/TPS.2015.2440101.
  4. Chace W.G. and Levine M.A. // J. Appl. Phys. 1960. V. 31. P. 1298.
  5. Бурцев В.А., Калинин Н.В., Лучинский А.В. Электрический взрыв проводников и его использование в электрофизических установках. М.: Энергоатомиздат. 1990. 288 с.
  6. Oreshkin V.I. and Baksht R.B. Wire Explosion in Vacuum. // IEEE Transactions on Plasma Science. 2020. Vol. 48. № 5. P. 2114.
  7. Лебедев С.В., Хайкин С.Э. // ЖЭТФ. 1954. Т. 26. В. 5. С. 629.
  8. Лебедев С.В. // ЖЭТФ. 1957. Т. 32. В. 2. С. 199.
  9. Лебедев С.В., Савватимский А.И. // Теплофизика высоких температур. 1981. Т. 19. В. 6. С. 1184.
  10. Лебедев С.В., Савватимский А.И. // Теплофизика высоких температур. 1970. Т. 8. В. 3. С. 524–531.
  11. Лебедев С.В., Савватимский А.И. // УФН. 1984. Т. 144. В. 2. С. 215–250.
  12. Wrana J. // Arch. Elektrotechn. 1939. B. 33. H. 10. S. 656.
  13. Bennett F.D., Kahl G.D., Wedemeyer E.H. // In Exploding Wires / Ed. by W.G. Chace and H.K. Moore, New York: Plenum Press, 1964. V. 3. P. 65.
  14. Bennett F.D., Kahl G.D. // In Exploding Wires / Ed. by W.G. Chace and H.K. Moore, New York: Plenum Press, 1968. V. 4. P. 1.
  15. Edelson H.D. and Korneff T. // In Exploding Wires / Ed. by W.G. Chace and H.K. Moore, N. Y.: Plenum Press, 1964. V. 3. P. 267.
  16. Kalantar D.H. and Hammer D.A. // Phys. Rev. Lett. 1993. V. 71. Nо. 23. P. 3806.
  17. Иваненков Г.В., Мингалеев А.Р., Пикуз С.А., Романова В.М., Степневски В., Хаммер Д., Шелковенко Т.А. // ЖЭТФ. 1998. Т. 114. В. 4(10). С. 1216.
  18. Pikuz S.A., Shelkovenko T.A., Mingaleev A.R., Hammer D.A., Neves H.P. // Physics of Plasmas. 1999. V. 6. Nо. 11. P. 4272.
  19. Chace W.G. // Physics of Fluid. 1959. V. 2. N. 2. P. 230.
  20. Мартынюк М.М. Фазовый взрыв в метастабильной жидкости. // Физика горения и взрыва. 1977. Т. 13. В. 2. С. 213.
  21. Воробьев В.С., Малышенко С.П. // ЖЭТФ. 1997. Т. 111. В. 6. С. 2016.
  22. Воробьев В.С., Малышенко С.П., Ткаченко С.И., Фортов В.Е. // Письма в ЖЭТФ. 2002. Т. 75. В. 8. С. 445.
  23. Воробьев В.С., Малышенко С.П. // Теплофизика высоких температур. 2010. Т. 48. В. 6. С. 1005.
  24. Lebedev S.V., Beg F.N., Bland S.N., Chittenden J.P., Dangor A.E., Haines M.G., Zakaullah M., Pikuz S.A., Shelkovenko T.A., Hammer D.A. // Rev. Sci. Instr. 2001. V. 72. N. 1. P. 671.
  25. Hammer D.A. and Sinars D.B. // Laser and Particle Beams. 2001. V. 19. P. 377.
  26. Грабовский Е.В., Митрофанов К.Н., Олейник Г.М., Порофеев Ю.И. // Физика плазмы. 2004. Т. 30. № 2. С. 139.
  27. Sinars D.B., Cuneo M.E., Yu E.P., Bliss D.E., Nash T.J., Porter J.L., Deeney C., Mazarakis M.G., Sarkisov G.S., and Wenger D.F. // Phys. Rev. Lett. 2004. V. 93. Nо. 14. P. 145002.
  28. Cuneo M.E., Waisman E.M., Lebedev S.V. et al. // Phys. Rev. E. 2005. V. 71. P. 046406.
  29. Sinars D.B., Cuneo M.E., Yu E.P., Lebedev S.V., Cochrane K.R., Jones B., MacFarlane J.J., Mehlhorn T.A., Porter J.L., and Wenger D.F. // Phys. of Plasmas. 2006. V. 13. P. 042704.
  30. Грабовский Е.В., Грицук А.Н., Смирнов В.П. и др. // Физика плазмы. 2011. Т. 37. № 11. С. 1023.
  31. Wu J., Wang L.P., Han J.J., Li M., Sheng L., Li Y., Zhang M., Guo N., Lei T.S., Qiu A.C., and Lv M. // Phys. of Plasmas. 2012. V. 19. P. 022702. doi: 10.1063/1.3677777.
  32. Романова В.М., Иваненков Г.В., Мингалеев А.Р., Тер-Оганесьян А.Е., Шелковенко Т.А., Пикуз С.А. // Физика плазмы. 2015. В. 41. С. 671.
  33. Гуськов С.Ю., Иваненков Г.В., Пикуз С.А., Шелковенко Т.А. // Квантовая электроника. 2003. Т. 33. № 11. С. 958.
  34. Koлгатин С.Н., Лев M.Н., Перегуд Б.П., Степанов A.M., Федорова T.A., Фурман A.C., Хачатурьянц A.В. // ЖТФ. 1989.Т. 59. В. 9. С. 123.
  35. Romanova V.M., Ivanenkov G.V., Parkevich E.V., Tilikin I.N., Medvedev M.A., Shelkovenko T.A., Pikuz S.A., and Selyukov A.S. // J. Phys. D: Appl. Phys. 2021. V. 54. P. 175201. doi: 10.1088/1361-6463/abdce5.
  36. Романова В.М., Тиликин И.Н., Тер-Оганесьян А.Е., Мингалеев А.Р., Шелковенко Т.А., Хирьянова А.И., Пикуз С.А. // Физика плазмы. 2022. Т. 48. № 2. С. 141. doi: 10.31857/S0367292122020135.
  37. Wu Jian, Li Xingwen, Lu Yihan, Lebedev S.V., Yang Zefeng, Jia Shenli, and Qiu Aici. // Physics of Plasmas 23, 112703 (2016).
  38. Sarkisov G.S., Hamilton A., and Sotnikov V. // Phys. Rev. A. 2019. V. 99. 012503.
  39. Sarkisov G.S., Sasorov P.V., Struve K.W., and McDaniel D.H. // Jour. Appl. Phys. 2004. V. 96. P. 1674.
  40. Romanova V.M., Mingaleev A.R., Ter-Oganesyan A.E., Shelkovenko T.A., Pikuz S.A. // ВАНТ. 2013. № 1(83). P. 284.
  41. Zhakhovsky V.V., Pikuz S.A., Tkachenko S.I., Sasorov P.V., Shelkovenko T.A., Knapp P.F., Saylor C.C., and Hammer D.A. // AIP Conf. Proc. 2012. V. 1426. P. 1207.
  42. Lv F., Liu P., Qi H., Liu J. // Computational Materials Science. 2019. V. 162. P. 88. doi: 10.1016/j.commatsci.2019.02.026.
  43. Romanova V.M., Ivanenkov G.V., Mingaleev A.R., Ter-Oganesyan A.E., Tilikin I.N., Shelkovenko T.A., and Pikuz S.A. // Phys. Plasmas. 2018. V. 25. P. 112704. doi: 10.1063/1.5052549.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. a) Characteristic oscillograms of current and voltage during an electric explosion in vacuum. Gold wire (Au), diameter 25 μm. 1 – beginning of the explosion itself: current drop and sharp increase in resistance, 2 – maximum overvoltage, 3 – voltage collapse, end of energy deposition and resistive stage of the explosion. Then the discharge current is transferred by the plasma corona, and the circuit operates in the short-circuit mode; b) current and voltage during an EEC in air in the breakdown mode. Wire material copper (Cu), diameter 25 μm; c) current and voltage during an EEC in air in the mode with a current pause. Wire material copper (Cu), diameter 25 μm. Interruption (pause) of the current occurs at a low charging voltage, if at the moment of collapse the energy (voltage) stored in the capacitor is not enough for breakdown of the discharge gap. As the explosion products expand, their density decreases, a secondary breakdown occurs, and the current in the circuit resumes.

下载 (154KB)
3. Fig. 2. Core-corona structure during EEP in vacuum. a) X-ray (2.5 < λ < 5 Å) shadow image of the explosion of a tungsten wire; b) laser (λ = 5324 Å) shadow image of the core during the explosion of an aluminum wire; c) plasma corona in the UV image (ɛ >10 eV) obtained in one shot with (b).

下载 (194KB)
4. Fig. 3. X-ray (2.5 < λ < 5 Å) shadow image of the explosion of a nickel wire on a high-current generator in a vacuum.

下载 (123KB)
5. Fig. 4. Core structures in low-current EEP in vacuum at the late stage of discharge. (a) X-ray (2.5 < λ < 5 Å) shadow image of the explosion of a tungsten wire and (b) laser (λ = 5324 Å) shadow image of the explosion of a copper wire.

下载 (171KB)
6. Fig. 5. (a) Laser (λ = 5324 Å) interferometric and shadow and (b) radiographic (2.5 < λ < 5 Å) images of the explosion of 4 copper wires; (c) superposition of the same section of images ((a) and (b) –1 and 2, respectively).

下载 (162KB)
7. Fig. 6. Laser (λ = 5324 Å) shadow image of a silver wire exploding in air.

下载 (95KB)
8. Fig. 7. Laser shadow image of the explosion of a gold wire in a vacuum in radiation with wavelengths λ = 532 nm (a) and λ = 1064 nm (b).

下载 (146KB)
9. Fig. 8. Interferometric image of the explosion of a molybdenum wire in air in radiation with wavelengths λ = 532 nm (a) and λ = 1064 nm (b).

下载 (233KB)
10. Fig. 9. Laser shadow (a, c) and interferometric (b, d) images of the explosion of a palladium wire in air in radiation with λ = 532 nm (a, b) and λ = 1064 nm (c, d).

下载 (274KB)
11. Fig.10. X-ray image of a gold wire explosion (a); enlarged sections of the tubular core image (b); densitogram profiles of selected fragments (c).

下载 (101KB)
12. Fig.11. Molecular dynamics simulation of Al wire explosion. Snapshots of the density map ρ(x, y), averaged over the cylinder length lz = 40.2 nm. The gray shade is proportional to the density. Each pixel represents a region of 1×1 nm2, which can accommodate ~2400 atoms. The dotted arrows point to the side-view density map ρ(x, z), averaged over ly = 800 nm.

下载 (104KB)

版权所有 © Russian Academy of Sciences, 2024