Motion of a thin layer of magnetic fluid near a magnetizing body in a homogeneous magnetic field

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The flow of a thin layer of a magnetic fluid along a horizontal plane near an fixed magnetizable cylindrical body in an applied uniform vertical magnetic field were investigated theoretically and experimentally. The shapes of the surface of the magnetic fluid at different times were plotted. The influence of the applied field on the flow of the layer was studied.

Толық мәтін

Рұқсат жабық

Авторлар туралы

O. Sharova

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: olgasharova96@mail.ru
Ресей, Moscow

D. Pelevina

Lomonosov Moscow State University

Email: olgasharova96@mail.ru
Ресей, Moscow

V. Naletova

Lomonosov Moscow State University

Email: olgasharova96@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Тятюшкин А.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 885; Tyatyushkin A.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 804.
  2. Белых С.С., Ерин К.В. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 962; Belykh S.S., Yerin C.V. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 878.
  3. Nguyen N.T. // Microfluid. Nanofluid. 2012. V. 12. P. 1.
  4. Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Shel’deshova E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 295.
  5. Ряполов П.А., Соколов Е.А., Калюжная Д.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 348; Ryapolov P.A., Sokolov E.A., Kalyuzhnaya D.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 300.
  6. Jiahao Dong, Decai Li, Zhenkun Li // JMMM. 2022. V. 557. Art. No. 169453.
  7. Shmyrov A., Mizev A., Shmyrova A., Mizeva I. // Phys. Fluids. 2019. V. 31. Art. No. 12101.
  8. Калмыков С.А., Налетова В.А., Пелевина Д.А., Турков В.А. // Изв. РАН. МЖГ. 2013. № 5. С. 3; Kalmykov S.A., Naletova V.A., Pelevina D.A., Turkov V.A. // Fluid Dynamics. 2013. V. 48. No. 5. P. 567.
  9. Needham D.J., Merkin J.H. // J. Fluid Mech. 1987. V. 184. P. 357.
  10. Naletova V.A., Kim L.G., Turkov V.A. // JMMM. 1995. V. 149. P. 162.
  11. Naletova V.A., Turkov V.A. // JMMM. 1999. V. 201. P. 346.
  12. Тятюшкин А.Н. // Изв. РАН. МЖГ. 2019. № 4. С. 27; Tyatyushkin A.N. // Fluid Dynamics. 2019. V. 54. No. 4. P. 466.
  13. Коровин В.М., Райхер Ю.Л. // Магнитная гидродинамика. 1987. № 1. С. 49.
  14. Zhu S., Bian Yu., Wu T. et al. // Nano Lett. 2020. V. 20. No. 7. P. 5513.
  15. Sharova O.A., Merkulov D.I., Pelevina D.A. et al. // Phys. Fluids. 2021. V. 33. No. 8. Art. No. 087107.
  16. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1992.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Flow of magnetic fluid near a cylindrical body, side view: diagram (a); photographs of the experiment (b) at different moments of time t at H∞ = 450 Oe, l = 1.4 cm. 1 — magnetizing body, 2 — layer of magnetic fluid, 3 — hole for draining liquid.

Жүктеу (125KB)
3. Fig. 2. Forms of the MF layer at different moments of time t at H∞ = 400 Oe: experiment l = 4.54 cm (a); calculation for experimental parameters (b).

Жүктеу (166KB)
4. Fig. 3. Dependence of the depth in layer h on time t in section x=0.6 cm for fields 1 — H∞ = 200 Oe, 2 — H∞ = 300 Oe, 3 — H∞ = 400 Oe: experiment (a) and calculation (b).

Жүктеу (79KB)
5. Fig. 4. Dependence of the function F on x at H∞ = 400 Oe (a) for different values ​​of zb: 1 — zb = 0.5 cm, 2 — zb = 0.6 cm; magnetic field isolines (b): in region I the field is greater than the applied one: H > H∞, and in region II the field is less than the applied one: H < H∞; 1 — H = 1.22∙H∞, 2 — H = 1.11∙H∞, 3 — H = 1.07∙H∞, 4 — H = H∞, 5 — H = 0.96∙H∞, 6 — H = 0.92∙H∞, 7 — H = 0.84∙H∞, 8 — z = h0.

Жүктеу (102KB)

© Russian Academy of Sciences, 2024