Technological methods for reducing the sintering temperature of ceramics based on the BZN cubic pyrochlore system
- 作者: Marakhovskiy М.А.1, Talanov М.V.2
 - 
							隶属关系: 
							
- Institute of High Technologies and Piezotechnics, Southern Federal University
 - Moscow Institute of Physics and Technology (National Research University)
 
 - 期: 卷 88, 编号 5 (2024)
 - 页面: 800-804
 - 栏目: Physics of ferroelectrics
 - URL: https://clinpractice.ru/0367-6765/article/view/654688
 - DOI: https://doi.org/10.31857/S0367676524050175
 - EDN: https://elibrary.ru/QEEHYQ
 - ID: 654688
 
如何引用文章
详细
For the first time, ceramics of the Bi2O3-ZnO-Nb2O5 system with high density, homogeneous microstructure and high dielectric parameters (higher by 30% in comparison with traditional ceramic technologies) were obtained by spark plasma sintering. The mechanisms of ceramic frame formation have been studied and technological modes of sintering have been optimized.
全文:
作者简介
М. Marakhovskiy
Institute of High Technologies and Piezotechnics, Southern Federal University
							编辑信件的主要联系方式.
							Email: marmisha@mail.ru
				                					                																			                												                	俄罗斯联邦, 							Rostov-on-Don						
М. Talanov
Moscow Institute of Physics and Technology (National Research University)
														Email: marmisha@mail.ru
				                					                																			                												                	俄罗斯联邦, 							Moscow						
参考
- Du H., Yao X. // Mater. Res. Bull. 2005. V. 40. No. 9. P. 1527.
 - Cann D.P., Randall C.A., Shrout T.R. // Solid State Commun. 1996. V. 100. No. 7. P. 529.
 - Baker A., Lanagan M., Randall C. et al. // Int. J. Appl. Ceram. Technol. 2005. V. 2. No. 6. P. 514.
 - Nino J.C. // J. Appl. Phys. 2001. V. 89. No. 8. P. 4512.
 - Levin I., Amos T.G., Nino J.C. et al. // J. Solid State Chem. 2002. V. 168. No. 1. P. 69.
 - Liu D., Liu Yi., Huang Sh.Q. et al. // J. Amer. Ceram. Soc. 1993. V. 76. P. 2129.
 - Wang X., Wang H., Yao X. // J. Amer. Ceram. Soc. 1997. V. 80. P. 2745.
 - Melot B., Rodriguez E., Proffen Th. et al. // Mater. Res. Bull. 2006. V. 41. No. 5. P. 961.
 - Kamba S., Porokhonskyy V., Pashkin A. et al. // Phys. Rev. B, 2002. V. 66. No. 5. P. 054106.
 - Radosavljevic I., Evans J., Sleight A. // J. Solid State Chem. 1998. V. 136. No. 1. P. 63.
 - Bush A.A., Talanov M.V., Stash A.I. et al. // Cryst. Growth Des. 2020. V. 20. No. 2. P. 824.
 - Liu Y., Withers R.L., Nguyen H.B. et al. // J. Solid State Chem. 2009. V. 182. No. 10. P. 2748.
 - Nino J.C., Lanagan M.T., Randall C.A. // J. Appl. Phys. 2001. V. 89. Art. No. 4512.
 - Liang K., Gao L., Fang Z. et al. // J. Eur. Ceram. 2021. V. 41. P. 3425.
 - Youn H.-J., Sogabe T., Randall C.A. et al. // J. Amer. Ceram. Soc. 2001. V. 84. No. 11. P. 2557.
 - Talanov M.V. // In: Pyrochlore ceramics: properties, processing, and applications. Elsevier Series on Advanced Ceramic Materials. 2022. P. 295.
 - Valant M., Davies P.K. // J. Mater. Sci. 1999. V. 34. No. 5437.
 - Chen Y., Qi J., Zhang M. et al. // J. Adv. Ceram. 2022. V. 11. No. 7. P. 1179.
 - Tagantsev A.K., Lu J., Stemmer S. // Appl. Phys. Lett. 2005. V. 86. No. 3. Art. No. 032901.
 - Wang R., Xie R., Sekiya T., Shimojo Y. // Mater. Res. Bull. 2004. V. 39. No. 11. P. 1709.
 - Han B., Zhao C., Zhu Z-X. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. No. 39. P. 34078.
 - Marakhovsky M.A., Panich A.A., Talanov M.V. et. al // Ferroelectrics. 2021. V. 575. No. 1. P. 43.
 - Marakhovsky M.A., Panich A.A., Talanov M.V., Marakhovsky V.A. // Ferroelectrics. 2020. V. 560. No. 1. P. 1.
 - Niemiec P., Bochenek D., Brzezinska D. // Ceram. Int. 2023. V.49. No. 22. P. 35687.
 - Wang T., Zhang H., Cheng L. et al. // Ceram. Int. 2022. V. 48. No. 9. P. 12800.
 - Мараховский М.А., Таланов М.В., Панич А.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 9. С. 1279; Marakhovskiy M.A., Talanov M.V., Panich A.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 9. P. 1317.
 - Мараховский М.А., Панич А.А., Таланов М.В., Мараховский В.А. // Изв. РАН. Сер. физ. 2020. Т. 84. № 11. С. 1667; Marakhovsky M.A., Panich A.A., Talanov M.V., Marakhovsky V.A. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 11. P. 1419.
 - Valant M., Davies P.K. // J. Amer. Ceram. Soc. 2000. V. 83. No. 1. P. 147.
 - Fruth V., Ianculescu A., Berger D. et al. // J. Eur. Ceramic. 2006. V. 26. No. 14. P. 3011.
 - Cavaliere P., Sadeghi B., Shabani A. // In: Spark plasma sintering of materials. Advances in processing and applications. Cham: Springer, 2019. P. 3.
 - Zhang Z.H., Wang F.C., Wang L. et al. // Mater. Charact. 2008. V. 59. No. 3. P. 329.
 
补充文件
附件文件
动作
	1.
	JATS XML
			2.
			Fig. 1. Powder X-ray diffraction patterns of the studied samples obtained by different sintering methods.
							
					
				
								
		
			下载 (161KB)
		
		
				
			3.
			Fig. 2. Images of the microstructure of ceramic samples sintered by different methods: SPS at Tsinter = 850 °C (a), 870 °C (b), 900 °C (c), 930 °C (d) and 950 °C (d) and ATM at Tsinter = 1000 °C (e).
							
					
				
								
		
			下载 (722KB)
		
		
				
			4.
			Fig. 3. Images of the microstructure of ceramic samples sintered by the SPS method at a temperature of 950 °C with different isothermal holding times: 0 min (a), 0.5 min (b), 1 min (c).
							
					
				
								
		
			下载 (292KB)
		
		
	
				
			
						
						
						
						
					





