Impedance-matched ceramic materials based on ferrospinels

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We studied the frequency spectra of the dielectric and magnetic permittivity, as well as the dielectric and magnetic losses of ferrospinels made by sintering by solid-phase reaction from the initial reagent [(NiCuZn)OMnO2]Fe₂O₃. We considered various systems of ferrites with a sign-varying temperature coefficient of magnetic saturation. Such systems are of practical interest for use in devices that require impedance matching, while at the same time providing stability magnetization in the specified temperature range (from –40 to 100 °C), which can vary by no more than 5%. The results of studying ferrospinels in the frequency ranges from 1 MHz to 3 GHz are discussed.

作者简介

S. Serebryannikov

National Research University “MPEI”

编辑信件的主要联系方式.
Email: SerebriannikSV@mpei.ru
俄罗斯联邦, Moscow, 111250

A. Dolgov

National Research University “MPEI”

Email: SerebriannikSV@mpei.ru
俄罗斯联邦, Moscow, 111250

S. Serebryannikov

National Research University “MPEI”

Email: SerebriannikSV@mpei.ru
俄罗斯联邦, Moscow, 111250

V. Kovalchuk

Moscow Aviation Institute (National Research University)

Email: SerebriannikSV@mpei.ru
俄罗斯联邦, Moscow, 121552

A. Belevtsev

Moscow Aviation Institute (National Research University)

Email: SerebriannikSV@mpei.ru
俄罗斯联邦, Moscow, 121552

I. Epaneshnikova

Moscow Aviation Institute (National Research University)

Email: SerebriannikSV@mpei.ru
俄罗斯联邦, Moscow, 121552

V. Kryuchkov

Moscow Aviation Institute (National Research University)

Email: SerebriannikSV@mpei.ru
俄罗斯联邦, Moscow, 121552

参考

  1. Ullah M.A., Keshavarz R., Abolhasa M. et al. // IEEE Access. 2022. V. 10. P. 17231.
  2. Zheng W., Ye W., Yang P. et al. // Molecules. 2022. V. 27. No. 13. P. 4117.
  3. Cheng J., Zhang H., Ning M. et al. // Adv. Funct. Mater. 2022. V. 32. No. 23. Art. No. 2200123.
  4. Серебрянников С.В., Серебрянников С.С., Долго А.И. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 9. С. 1264; Serebryannikov S.V., Serebryannikov S.S., Dolgo A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1047.
  5. Vinnik D.A., Zhivulin V.E., Sherstyuk D.P. et al. // Mater. Today Chem. 2021. V. 20. Art. No. 100460.
  6. Hill M.D., Polisetty S., Griffith C.M. Composite hexagonal ferrite materials. Patent US109950034B2. 2017.
  7. Mathews S.A., Babu D.R // Curr. Appl. Phys. 2021. V. 29. P. 39.
  8. Krowne C.M. // IEEE Trans. Microw. Theory Techn. 2022. V. 70. No. 4. P. 2087.
  9. Matytsin S.M., Hock K.M., Liu L. et al. // J. Appl. Phys. 2003 V. 94 P. 1146.
  10. Телегин А.В., Сухоруков Ю.П., Бебенин Н.Г. // ЖЭТФ. 2020. Т. 158. № 6. С. 1118; Telegin A.V., Sukhorukov Y.P., Bebenin N.G. // JETP. 2020. V. 131. P. 970.
  11. Kuroda S., Yamaura T., Iga A., Okayama K. Antenna apparatus. Patent US7482977B2. 2004.
  12. Barba‐Juan A., Mormeneo‐Segarra A., Vicente N. et al. // J. Amer. Ceram. Soc. 2022. V. 105. No. 4. P. 2725.
  13. Розанов К.Н., Старостенко С.Н. // Радиотехн. и электрон. 2003. Т. 48. С. 715.
  14. Caratelli D., Al-Rawi A., Song J., Favreau D. // Microwave J. 2020. V. 63. No. 2. P. 36.
  15. Sato-Akaba H., Tseytlin M. // J. Magn. Res. 2019. V. 304. P. 42.
  16. Yoshikawa H., Hiramatsu N., Uchimura H., Yonehara M. // Electron. Commun. Japan. 2021. V. 104. No. 2. Art. No. e12309.
  17. Cеребрянников С.В., Черкасов А.П., Серебрянников С.С., Костин П.И. // Изв. РАН. Сер. физ. 2018. Т. 82. № 8. С. 1030; Serebryannikov S.V., Cherkasov A.P., Serebryannikov S.S., Konshin P.I. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 8. P. 928.
  18. Mahalakshmi S., Jayasri R., Nithiyanatham S. et al. // Appl. Surface Sci. 2019. V. 494. P. 51.
  19. Qin M., Zhang L., Wu H. // Adv. Science. 2022. V. 9. No. 10. Art. No. 2105553.
  20. Gonçalves J.M., de Faria L.V., Nascimento A. et al. // Analyt. Chim. Acta. 2022. V. 1233. Art. No. 340362.
  21. Белоус А.И., Марданов М.К, Шведов С.В. СВЧ-электроника в системах радиолокации связи. Технологическая энциклопедия. Кн. 1. М.: Техносфера, 2021.
  22. Родионов С.А., Мерзликин А.М. // ЖЭТФ. 2022. Т. 161. № 5. С. 702; Rodionov S.A., Merzlikin A.M. // JETP. 2022. V. 134. No. 5. P. 600.
  23. Wang J., Lou J., Wang J.F. et al. // J. Phys. D. Appl. Phys. 2022. V. 55. No. 30. Art. No. 303002.
  24. Serebryannikov S.V., Cherkasov A.P., Serebryannikov S.S. et al. // Proc. SPIE. 2018. V. 10800. Art. No. 108000J.
  25. Шипко М.Н., Коровушкин В.В., Костишин В.Г. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 2. С. 232; Shipko M.N., Korovushkin V.V., Kostishin V.G. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 2. P. 203.
  26. Nikolaev E.V., Lysenko E.N., Bobuyok S., Surzhikov A.P. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 4. P. 549.
  27. Al-Onaizan M.H., Ril’ A.I., Semin A.N. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. S1. P. S122.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024