Termostabil'nyy segnetoelektrik HfO2 : Al2O3 (10:1) v SOI i SOS geterostrukturakh posle RTA obrabotok i utoncheniya kremniya okisleniem

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Обнаруженная ранее в 10–20 нм скрытом сегнетоэлектрическом слое HfO2:Al2O3 (10:1) структур кремний-на-изоляторе и кремний-на-сапфире орторомбическая фаза Pmn21 после отжигов при T > 950 ◦C 1 ч отсутствует после ступенчатых быстрых 30 с термообработок по данным малоугловой рентгеновской дифракции (GIXRD). Вместо нее формируются стабильные до 1000 ◦C напряженные текстурированные сегнетоэлектрические слои с ориентацией {111} для подложек кремния и {002} для сапфира соответственно в ромбоэдрической rR3 или орторомбической Pca21 фазах, неразличимых по GIXRD дифрактограммам. В пользу ромбоэдрической фазы rR3 свидетельствует большая остаточная поляризация в кремний-на-изоляторе структурах.

参考

  1. U. Schroeder, M. H. Park, Th. Mikolajick, and Ch. S. Hwang, Nat. Rev. Mater. 7, 653 (2022); https://doi.org/10.1038/s41578-022-00431-2.
  2. A. A. Bassou, F. G. Figueiras, J. R. Fernandes, and P. B. Tavares, Applied Materials Today 41(12), 102465 (2024); https://doi.org/10.1016/j.apmt.2024.102465.
  3. H.-J. Lee, M. Lee, K. Lee, J. Jo, H. Yang, Y. Kim, S. C. Chae, U. Waghmare, and J. H. Lee, Science 369(6509), 1343 (2020); https://doi.org/10.1126/science.aba0067.
  4. J. Liao, W. Shi, J. Yang, S. Zhang, W. Yang, B. Wang, F. Yang, H. Xu, R. Xie, Y. Wang, Y. Zhou, and M. Liao, J. Alloys Compd. 1007, 176327 (2024); https://doi.org/10.1016/j.jallcom.2024.176327.
  5. S. Lancaster, S. Slesazeck, and T. Mikolajick, IEEE Transactions on Materials for Electron Devices 1, 36 (2024); https://doi.org/10.1109/TMAT.2024.3423665.
  6. S. Lv, T. Cao, Z. Wang, T. Xie, S. Gao, G. Teobaldi, Q. Hu, and L.-M. Liu, Computational Materials Today 4, 100010 (2024); https://doi.org/10.1016/j.commt.2024.100010.
  7. A. Miakonkikh, A. Lomov, A. Rogozhin, K. Rudenko, V. Lukichev, D. Kiselev, and V. Popov, Phase transformation in ALD hafnia based layers for silicon-on-ferroelectric devices. 2020 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS). IEEE Express, Date Added to IEEE Xplore: 09 March 2021, IEEE 9365298 (2020); doi: 10.1109/eurosoi-ulis49407.2020.9365298.
  8. V. A. Antonov, F. V. Tikhonenko, V. P. Popov, A. V. Miakonkikh, K. V. Rudenko, and V. A. Sverdlov, SolidState Electronics 215, 108821 (2023); https://doi.org/10.1016/j.sse.2023.108821.
  9. A. G. Chernikova, M. G. Kozodaev, D. V. Negrov, E. V. Korostylev, M. H. Park, U. Schroeder, C. S. Hwang, and A. M. Markeev, ACS Appl. Mater. Interfaces 10(3), 2701 (2018); https://doi.org/10.1021/acsami.7b15110.
  10. J. Okuno, T. Kunihiro, K. Konishi, Y. Shuto, F. Sugaya, M. Materano, T. Ali, M. Lederer, K. Kuehnel, K. Seidel, T. Mikolajick, U. Schroeder, M. Tsukamoto, and T. Umebayashi, IEEE Journal of the Electron Devices Society 10, 778 (2022); https://doi.org/0.1109/JEDS.2022.3187101.
  11. V. P. Popov, V. A. Antonov, F. V. Tikhonenko, A. V. Miakotnykh, and K. V. Rudenko, Bull. Russ. Acad. Sci.: Phys. 87(6), 760 (2023); https://doi.org/10.3103/S1062873823702210.
  12. V. Petˇr´ıˇcek, M. Duˇsek, and L. Palatinus, Zeitschrift fur Kristallographie – Crystalline Materials 229, 345 (2014); https://doi.org/10.1515/zkri-2014-1737.
  13. A. Le Bail, Powder Diffraction 20(04), 316 (2005); https://doi.org/10.1154/1.2135315.
  14. S. Cristoloveanu, I. Ionica, A. Diab, and F. Liu, ECS Transactions 50(5), 249 (2012); https://doi.org/10.1149/05005.0249ecst.
  15. B. Noheda, P. Nukala, and M. Acuautla, Nat. Mater. 22(5), 562 (2023); https://doi.org/10.1038/s41563-023-01507-2.
  16. V. Popov, M. Ilnitsky, V. Antonov, V. Vdovin, I. Tyschenko, A. Miakonkikh, and K. Rudenko, Solid State Electron 159, 63 (2019); https://doi.org/10.1016/j.sse.2019.03.036.
  17. V. P. Popov, V. A. Antonov, I. E. Tyschenko, V. I. Vdovin, A. K. Gutakovskii, A. V. Miakonkikh, and K. V. Rudenko, Sol. State Electronics 168, 107734 (2020); doi: 10.1016/j.sse.2019.107734; https://doi.org/10.1016/j.sse.2019.107734.
  18. V. P. Popov, F. V. Tikhonenko, V. A. Antonov, K. A. Tolmachev, A. A. Lomov, A. V. Miakonkikh, and K. V. Rudenko, Solid State Electronics 194, 108348 (2022); https://doi.org/10.1016/j.sse.2022.108348.
  19. Y. Wei, P. Nukala, M, Salverda, S. Matzen, H. J. Zhao, J. Momand, A. S. Everhardt, G. Agnus, G. R. Blake,P. Lecoeur, B. J. Kooi, J. Iniguez, B. Dkhil, and B. Noheda, Nat. Mater. 17(12), 1095(2018); https://doi.org/10.1038/s41563-018-0196-0.
  20. A. Petraru, Oj Gronenberg, U. Sch¨urmann, L. Kienle, R. Droopad, and H. Kohlstedt, ACS Appl. Mater. Interfaces 16, 42534 (2024); https://doi.org/10.1021/acsami.4c10423.
  21. N. Kaiser, Y. J. Song, T. Vogel, E. Piros, T. Kim, P. Schreyer, S. Petzold, R. Valenti, and L. Alff, Appl. Electron. Mater. 5, 754 (2023); https://doi.org/10.1021/acsaelm.2c01255.
  22. N. Schmidt, N. Kaiser, T. Vogel, E. Piros, S. Karth¨auser, R. Waser, L. Alff, and R. Dittmann, Adv. Electron. Mater. 10, 2300693 (2024); https://doi.org/10.1002/aelm.202300693.
  23. V. Popov, F. Tikhonenko, V. Antonov, I. Tyschenko, A. Miakonkikh, S. Simakin, and K. Rudenko, Nanomaterials 11(2), 291 (2021); https://www.mdpi.com/2079-4991/11/2/291.
  24. M. O. Hill, J. S. Kim, M. L. Muller, D. Phuyal, S. Taper, M. Bansal, M. T. Becker, B. Bakhit, T. Maity, B. Monserrat, G. Di Martino, N. Strkalj, and J. L. MacManus-Driscoll, Adv. Mater. 36, 2408572 (2024); https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/adma.202408572.
  25. M. Tarkov, F. Tikhonenko, V. Antonov, V. Popov, A. Miakonkikh, and K. Rudenko, Nanomaterials 12, 4488 (2022); https://doi.org/10.3390/nano12244488

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2025