NUMERICAL SOLUTION OF INTEGRAL EQUATIONS OF THE THIRD KIND WITH FIXED SINGULARITIES OF THE KERNEL
- Authors: Gabbasov N.S1, Galimova Z.K.2
 - 
							Affiliations: 
							
- Naberezhnye Chelny Institute of Kazan (Volga region) Federal University
 - Naberezhnye Chelny Branch of Kazan Innovation University named after V.G. Timiryasov
 
 - Issue: Vol 61, No 5 (2025)
 - Pages: 685-696
 - Section: NUMERICAL METHODS
 - URL: https://clinpractice.ru/0374-0641/article/view/688508
 - DOI: https://doi.org/10.31857/S0374064125050095
 - EDN: https://elibrary.ru/GZTYQH
 - ID: 688508
 
Cite item
Abstract
A linear integral equation of the third kind with fixed singularities in the kernel is studied. For its approximate solution in the space of generalized functions, a special generalized spline method is proposed and substantiated. Optimality of the method in order of accuracy is proved.
			                About the authors
N. S Gabbasov
Naberezhnye Chelny Institute of Kazan (Volga region) Federal University
														Email: gabbasovnazim@rambler.ru
				                					                																			                								 				                								 						
Z. Kh Galimova
Naberezhnye Chelny Branch of Kazan Innovation University named after V.G. Timiryasov
														Email: galimovazh2020@mail.ru
				                					                																			                								 				                								 						
References
- Адамар, Ж. Задача Коши для линейных уравнений с частными производными гиперболического типа / Ж. Адамар. — М. : Наука, 1978. — 352 c.
 - Bart, G.R. Linear integral equations of the third-kind / G.R. Bart, R.L. Warnock // SIAM J. Math. Anal. — 1973. — V. 4, № 4. — P. 609–622.
 - Кейз, К.М. Линейная теория переноса / К.М. Кейз, П.Ф. Цвайфель. — М. : Мир, 1972. — 384 c.
 - Замалиев, Р.Р. О прямых методах решения интегральных уравнений третьего рода с особенностями ядра : дис. . . . канд. физ.-мат. наук / Р.Р. Замалиев. — Казань, 2012. — 114 с.
 - Расламбеков, С.Н. Сингулярное интегральное уравнение первого рода в исключительном случае в классах обобщённых функций / С.Н. Расламбеков // Изв. вузов. Математика. — 1983. — № 10. — С. 51–56.
 - Бжихатлов, Х.Г. Об одной краевой задаче со смещением / Х.Г. Бжихатлов // Дифференц. уравнения. — 1973. — Т. 9, № 1. — С. 162–165.
 - Габбасов, Н.С. Специальный прямой метод решения интегральных уравнений в особом случае / Н.С. Габбасов // Дифференц. уравнения. — 2014. — Т. 50, № 9. — С. 1245–1252.
 - Габбасов, Н.С. К численному решению интегральных уравнений третьего рода с особенностями в ядре / Н.С. Габбасов, З.Х. Галимова // Изв. вузов. Математика. — 2016. — № 12. — С. 36–45.
 - Габбасов, Н.С. Оптимальные по порядку методы решения интегральных уравнений в особом случае / Н.С. Габбасов, З.Х. Галимова // Изв. вузов. Математика. — 2017. — № 9. — С. 3–12.
 - Габбасов, Н.С. Специальный вариант метода коллокации для интегральных уравнений третьего рода с неподвижными особенностями в ядре / Н.С. Габбасов, З.Х. Галимова // Изв. вузов. Математика. — 2018. — № 5. — С. 20–27.
 - Габдулхаев, Б.Г. Оптимальные аппроксимации решений линейных задач / Б.Г. Габдулхаев. — Казань: Изд-во Казанск. ун-та, 1980. — 232 c.
 - Прессдорф, З. Сингулярное интегральное уравнение с символом, обращающимся в нуль в конечном числе точек / З. Прессдорф // Мат. исследования. — 1972. — Т. 7, № 1. — C. 116– 132.
 - Габбасов, Н.С. Методы решения интегральных уравнений Фредгольма в пространствах обобщённых функций / Н.С. Габбасов. — Казань : Изд-во Казанск. ун-та, 2006. — 176 c.
 - Габбасов, Н.С. Методы решения интегрального уравнения третьего рода с фиксированными особенностями в ядре / Н.С. Габбасов // Дифференц. уравнения. — 2009. — Т. 45, № 9. — С. 1341–1348.
 - Завьялов, Ю.С. Методы сплайн-функций / Ю.С. Завьялов, Б.И. Квасов, В.Л. Мирошниченко. — М. : Наука, 1980. — 352 c.
 - Стечкин, С.Б. Сплайны в вычислительной математике / С.Б. Стечкин, Ю.Н. Субботин. — М. : Наука, 1976. — 248 c.
 - Педас, А. Метод кубической сплайн-коллокации для решения слабо сингулярных интегральных уравнений / А. Педас, Э. Тимак // Дифференц. уравнения. — 2001. — Т. 37, № 10. — С. 1415– 1424.
 - Даугавет, И.К. Введение в теорию приближения функций / И.К Даугавет. — Л. : Изд-во ЛГУ, 1977. — 184 c.
 
Supplementary files
				
			
					
						
						
						
						
									



