Diagnostics of the ionization processes in hydrocarbon flame with the use of the current-voltage characteristics
- Autores: Polyanskii V.А.1, Pankrat’eva I.L.1
-
Afiliações:
- Moscow State University
- Edição: Nº 1 (2024)
- Páginas: 77-82
- Seção: Articles
- URL: https://clinpractice.ru/1024-7084/article/view/672131
- DOI: https://doi.org/10.31857/S1024708424010049
- EDN: https://elibrary.ru/sduwdg
- ID: 672131
Citar
Resumo
The possibility of estimating the ionization parameters of high-temperature gas mixtures formed as a result of combustion processes is considered on the basis of the current-voltage characteristics measured using electrodes that generate an external electric field in the media under consideration.
Texto integral

Sobre autores
V. Polyanskii
Moscow State University
Autor responsável pela correspondência
Email: ilpan@imec.msu.ru
Institute of Mechanics
Rússia, MoscowI. Pankrat’eva
Moscow State University
Email: ilpan@imec.msu.ru
Institute of Mechanics
Rússia, MoscowBibliografia
- Karnani S, Dunn-Rankin D. Detailed characterization of DC electric field effects on small non-premixed flames // Combust. Flame. 2015. V. 162(7). P. 2865–2872.
- Gan Y.H., Wang M., Luo Y.L., Chen X.W., Xu J.L. Effects of direct-current electric fields on flame shape and combustion characteristics of ethanol in small scale // Adv. Mech. Eng. 2016. V. 8(1). P. 1–14.
- Власов П.А., Панкратьева И.Л., Полянский В.А. Исследование ЭГД-структуры течения высокотемпературной газовой смеси с неоднородным источником заряженных частиц // Изв. РАН. МЖГ. 2022. № 6. С. 94–100.
- Власов П.А., Панкратьева И.Л., Полянский В.А. Исследование механизмов взаимодействия углеводородного пламени с электрическим полем // Изв. РАН. МЖГ. 2023. № 4. С. 108–116.
- Pankratieva I.L., Polyanskii V.A. Modeling electrohydrodynamic flows in slightly conducting liquids // J. Applied Mechanics and Technical Physics. 1995. V. 36. № 4. P. 513–519.
Arquivos suplementares
Arquivos suplementares
Ação
1.
JATS XML
2.
Fig. 1. Volt-ampere characteristics for three different configurations of the torch by width and intensity (step height) of the ionization source W. Lines: 1 — W = 10, 0.2 < x < 0.8; 2 — W = 5, 0.2 < x < 0.8; 3 — W = 10, 0.4 < x < 0.6; 4 — W = 6, 0.4 < x < 0.6; 5 — W = 4, 0.4 < x < 0.6; 6 – W = 10, 0.47 < x < 0.53; 7 – W = 4, 0.47 < x < 0.53.
Baixar (86KB)
3.
Fig. 2. Dependence of the saturation current on the intensity of the source of charged particles W for different widths of the burning region L. Lines: 1 — L = 0.06, 2 — L = 0.2, 3 — L = 0.6, 4 — L = 1.
Baixar (73KB)
4.
Fig. 3. Dependence of saturation current Jsat on the characteristic size of the source of charged particles L for different W. Lines: 1 – W = 2, 2 – W = 4, 3 – W = 6, 4 – W = 8, 5 – W = 10.
Baixar (85KB)
5.
Fig. 4. Dependence of saturation current Jsat on the product LW (line 1); line 2 – value A in relation (2.1) for different values of LW.
Baixar (60KB)
6.
Fig. 5. Electrodes are completely immersed in the combustion region. Distributions of charged particle concentrations and volume charge q in a weak applied field (W = 4, L = 1, Fw = –100). Lines: 1 — n1, 2 — n2, 3 — q.
Baixar (68KB)
7.
Fig. 6. Electrodes are completely immersed in the combustion region. Distributions of electric potential F (line 1) and field strength E (line 2) in a weak applied field (W = 4, L = 1, Fw = –100).
Baixar (61KB)
8.
Fig. 7. Volt-ampere characteristics of electrodes completely immersed in the ionization region (W = 4, L = 1).
Baixar (55KB)
