Diagnostics of the ionization processes in hydrocarbon flame with the use of the current-voltage characteristics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The possibility of estimating the ionization parameters of high-temperature gas mixtures formed as a result of combustion processes is considered on the basis of the current-voltage characteristics measured using electrodes that generate an external electric field in the media under consideration.

Texto integral

Acesso é fechado

Sobre autores

V. Polyanskii

Moscow State University

Autor responsável pela correspondência
Email: ilpan@imec.msu.ru

Institute of Mechanics

Rússia, Moscow

I. Pankrat’eva

Moscow State University

Email: ilpan@imec.msu.ru

Institute of Mechanics

Rússia, Moscow

Bibliografia

  1. Karnani S, Dunn-Rankin D. Detailed characterization of DC electric field effects on small non-premixed flames // Combust. Flame. 2015. V. 162(7). P. 2865–2872.
  2. Gan Y.H., Wang M., Luo Y.L., Chen X.W., Xu J.L. Effects of direct-current electric fields on flame shape and combustion characteristics of ethanol in small scale // Adv. Mech. Eng. 2016. V. 8(1). P. 1–14.
  3. Власов П.А., Панкратьева И.Л., Полянский В.А. Исследование ЭГД-структуры течения высокотемпературной газовой смеси с неоднородным источником заряженных частиц // Изв. РАН. МЖГ. 2022. № 6. С. 94–100.
  4. Власов П.А., Панкратьева И.Л., Полянский В.А. Исследование механизмов взаимодействия углеводородного пламени с электрическим полем // Изв. РАН. МЖГ. 2023. № 4. С. 108–116.
  5. Pankratieva I.L., Polyanskii V.A. Modeling electrohydrodynamic flows in slightly conducting liquids // J. Applied Mechanics and Technical Physics. 1995. V. 36. № 4. P. 513–519.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Volt-ampere characteristics for three different configurations of the torch by width and intensity (step height) of the ionization source W. Lines: 1 — W = 10, 0.2 < x < 0.8; 2 — W = 5, 0.2 < x < 0.8; 3 — W = 10, 0.4 < x < 0.6; 4 — W = 6, 0.4 < x < 0.6; 5 — W = 4, 0.4 < x < 0.6; 6 – W = 10, 0.47 < x < 0.53; 7 – W = 4, 0.47 < x < 0.53.

Baixar (86KB)
3. Fig. 2. Dependence of the saturation current on the intensity of the source of charged particles W for different widths of the burning region L. Lines: 1 — L = 0.06, 2 — L = 0.2, 3 — L = 0.6, 4 — L = 1.

Baixar (73KB)
4. Fig. 3. Dependence of saturation current Jsat on the characteristic size of the source of charged particles L for different W. Lines: 1 – W = 2, 2 – W = 4, 3 – W = 6, 4 – W = 8, 5 – W = 10.

Baixar (85KB)
5. Fig. 4. Dependence of saturation current Jsat on the product LW (line 1); line 2 – value A in relation (2.1) for different values ​​of LW.

Baixar (60KB)
6. Fig. 5. Electrodes are completely immersed in the combustion region. Distributions of charged particle concentrations and volume charge q in a weak applied field (W = 4, L = 1, Fw = –100). Lines: 1 — n1, 2 — n2, 3 — q.

Baixar (68KB)
7. Fig. 6. Electrodes are completely immersed in the combustion region. Distributions of electric potential F (line 1) and field strength E (line 2) in a weak applied field (W = 4, L = 1, Fw = –100).

Baixar (61KB)
8. Fig. 7. Volt-ampere characteristics of electrodes completely immersed in the ionization region (W = 4, L = 1).

Baixar (55KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024