Radiation-stimulated processes under interaction of ions with porous structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

For objects with topological and fractal dimensions (using the example of a “Coulomb explosion”), the physics of modification of electron-stimulated processes in porous media under irradiation with multiply charged ions is considered. A quasi-one-dimensional model has been constructed, which is a convenient methodological approach that describes characteristic phenomena in various media. The results obtained are assessed within the framework of the “complexity” concept.

Full Text

Restricted Access

About the authors

N. N. Nikiforova

Arifov Institute of Ion Plasma and Laser Technologies, Academy of Sciences of the Republic of Uzbekistan; Institute of Materials Science, Academy of Sciences of the Republic of Uzbekistan, Scientific and Production Association “Physics-Sun”

Email: oksengendlerbl@yandex.ru
Uzbekistan, Tashkent; Tashkent

B. L. Oksengendler

Institute of Materials Science, Academy of Sciences of the Republic of Uzbekistan, Scientific and Production Association “Physics-Sun”; Institute of Polymer Chemistry and Physics, Academy of Sciences of the Republic of Uzbekistan

Author for correspondence.
Email: oksengendlerbl@yandex.ru
Uzbekistan, Tashkent; Tashkent

Kh. B. Ashurov

Arifov Institute of Ion Plasma and Laser Technologies, Academy of Sciences of the Republic of Uzbekistan

Email: oksengendlerbl@yandex.ru
Uzbekistan, Tashkent

B. R. Kutlimurotov

Arifov Institute of Ion Plasma and Laser Technologies, Academy of Sciences of the Republic of Uzbekistan

Email: oksengendlerbl@yandex.ru
Uzbekistan, Tashkent

S. Е. Maksimov

Arifov Institute of Ion Plasma and Laser Technologies, Academy of Sciences of the Republic of Uzbekistan

Email: oksengendlerbl@yandex.ru
Uzbekistan, Tashkent

О. А. Galkina

Institute of Polymer Chemistry and Physics, Academy of Sciences of the Republic of Uzbekistan

Email: oksengendlerbl@yandex.ru
Uzbekistan, Tashkent

References

  1. Oksengendler B.L., Maksimov S.E., Turaeva N.N., Djurabekova F.G. // Nucl. Instrum. Methods Phys. Res. B. 2014. V. 326. P.45. https://doi.org/10.1016/j.nimb.2013.09.040
  2. Максимов С.Е., Оксенгендлер Б.Л., Тураев Н.Ю. // Поверхность. Рентген., синротр. и нейтрон. исслед. 2013. № 4. С. 42. https://doi.org/10.7868/S0207352813040161
  3. Оксенгендлер Б.Л., Зацепин А.Ф., Аширметов А.Х., Тураева Н.Н., Сулейманов С.Х., Никифорова Н.Н., Ашуров Х.Б. // Поверхность. Рентген., синротр. и нейтрон. исслед. 2022. № 6. С. 53. https://doi.org/10.31857/S1028096022060139
  4. Бак П. Как работает природа. М.: УРСС, 2013. 276 с.
  5. Parilis E.S., Kishinevsky L.M., Turaev N.Y., Baklitzky B.E., Umarov F.F., Verleger V.Kh., Nizhnaya S.L., Bitensky I.S. Atomic Collisions on Solid Surfaces. Amsterdam: North-Holland, 1993. 664 p.
  6. Auger P. // Comptes Rendus de l’Académie des Sciences. 1923. V. 177. P. 169.
  7. Meitner L. // Z. Physik. 1922. B. 9. № 1. S. 131. https://doi.org/10.1007/BF01326962
  8. Парилис Э.С. Эффект Оже. Ташкент: Фан, 1969. 205 с.
  9. Szilard L., Chalmers C.A. // Nature. 1934. V. 134. P. 462. https://doi.org/10.1038/134462b0
  10. Cooper J.W. // Phys. Rev. 1962. V. 128. P. 681. https://doi.org/10.1103/PhysRev.128.681
  11. Platsman R.L. // Radiat. Res. 1955. V. 2. P. 1. https://doi.org/10.2307/3570224
  12. Varley J.A. // Nature. 1954. V. 174. P. 886. https://www.nature.com/articles/174886a0
  13. Dexter D.L. // Phys. Rev. 1960. V. 118. P. 934. https://doi.org/10.1103/PhysRev.118.934
  14. Yunusov M.S., Zaikovskaya M.A., Oksengendler B.L., Tokhirov K.R. // Phys. Stat. Sol. A. 1976. V. 35. P. 145. https://doi.org/10.1002/pssa.2210350260
  15. Turaeva N.N., Oksengendler B.L., Ruban I.N., Rashidova S. // Dokl. Chem. 2002. V. 387. P. 302. https://doi.org/10.1023/A:1021174422477
  16. Suleymanov S.X., Oksengendler B.L., Kulagina N.A. // Crystallogr. Rep. 2021. V. 66. № 6. P. 1066. https://doi.org/10.1134/S1063774521060419
  17. Fleischner R., Price P., Walker R. Nuclear Tracks in Solids. Berkeley: University of California Press, 1975. 605 p.
  18. Оксенгендлер Б.Л., Тураева Н.Н. Радиационная физика конденсированных сред. Т. 1. Ташкент: Фан, 2006. 136 с.
  19. Oksengendler B.L., Ashirmetov A.Kh., Turaeva N.N. et al. // Nucl. Instrum. Methods Phys. Res. B. 2022. V. 512. P. 66. https://doi.org/10.1016/j.nimb.2021.12.009
  20. Yokoya A., Ito T. // Int. J. Radiat. Biol. 2017. V. 93. № 8. P. 743. https://doi.org/10.1080/09553002.2017
  21. Gharibkandi N.A., Gieraltowska J., Wawrowicz K., Bilewicz A. // Materials. 2022. V. 15. № 3. P. 1143. https://doi.org/10.3390/ma15031143
  22. Anderson P.W. // Phys. Rev. 1958. V. 109. P. 1492. http://refhub.elsevier.com/S0168-583X(21)00419-5/h0255
  23. Тихомиров В.П., Горленко О.А., Измеров М.А. // Изв. Самарского науч. центра РАН. 2011. Т. 13. № 4(3). С. 879.
  24. Федер Е. Фракталы. М.: Мир, 1991. 254 с.
  25. Nicolis G., Prigogine I. Exploring Complexity, Аn Introduction, New York: W. H. Freeman & Company, 1989. 328 р.
  26. Чукбар К.В. // ЖЭТФ. 1995. Т. 108. Вып. 5 (11). С. 1875.
  27. Олемской А.И., Флат А.Я. // УФН. 1993. Т. 13. Вып. 12. С. 1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the extended concept 'Complexity' applied to radiation effects in complex media.

Download (44KB)
3. Fig. 2. Atomic structures with different topological dimensionality: a — three-dimensional; b — two-dimensional; c — one-dimensional chain.

Download (25KB)
4. Fig. 3. Characteristic dependence of destruction cross-section on topological dimensionality.

Download (11KB)
5. Fig. 4. Scheme of superposition of the Coulomb field of the Auger charge on the potential relief of electrons in the case of: a — strictly periodic relief of the electron potential; b — Anderson aperiodic chain.

Download (17KB)
6. Fig. 5. Fractal pore containing both concave surface regions α, where the interaction of neighboring atoms is suppressed, and convex region β, where the interaction of neighboring atoms is enhanced.

Download (7KB)
7. Fig. 6. Areas of a fractal surface with different curvature of local regions and, accordingly, with different overlap of the wave functions of neighboring atoms: ΔEV0 — corresponds to the width of the allowed valence band for flat surface areas; ΔEV — for concave surface areas with increased valence band width; — for convex areas with reduced overlap of the wave functions of neighboring atoms and narrowing of the valence band. This corresponds to both lower and higher radiation susceptibility, respectively.

Download (19KB)

Copyright (c) 2024 Russian Academy of Sciences