Formation of Nanostructures on the Surface of Aluminium—Silicon Films by Bombardment with Low-Energy Argon Ions of Inductive RF Discharge Plasma

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of an experimental study of changes in the chemical composition and surface topography of two-component AlSi thin films with an initial Si concentration of 1% under low-energy ion-plasma sputtering are presented. Using scanning electron microscopy, scanning electron Auger spectroscopy and secondary ion mass spectrometry, irradiation with argon ions with energies of 40–200 eV in the near-surface layer of the film was found to increase the Si concentration by more than an order of magnitude. Nanostructures in the form of hills with a diameter of 20–50 nm and a height of 15–30 nm are formed on the surface, which can be identified as silicon. The enrichment of the surface with Si and the formation of nanostructures can be caused by differences in the sputtering yields and threshold sputtering energies of the film components.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Bachurin

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Хат алмасуға жауапты Автор.
Email: vibachurin@mail.ru
Ресей, Yaroslavl, 150067

I. Amirov

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: vibachurin@mail.ru
Ресей, Yaroslavl, 150067

K. Lobzov

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS; Demidov Yaroslavl State University

Email: vibachurin@mail.ru
Ресей, Yaroslavl, 150067; Yaroslavl, 150003

S. Simakin

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: vibachurin@mail.ru
Ресей, Yaroslavl, 150067

M. Smirnova

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: vibachurin@mail.ru
Ресей, Yaroslavl, 150067

Әдебиет тізімі

  1. Gabovich A.M., Semeniuk V.F., Semeniuk N.I. // J. Phys. Appl. Phys. 2021. V. 54. P. 255301. https://doi.org/10.1088/1361-6463/abf0ee
  2. Randel E., Bradley R.M., Menoni C.S. // J. Appl. Phys. 2021. V. 130. P. 125303. https://doi.org/ 10.1063/5.0060699
  3. Михайленко М.С., Пестов А.Е., Чернышев А.К., Зорина М.В., Чхало Н.И., Салащенко Н.Н. // ЖТФ. 2022. Т. 92. С. 1219. https://doi.org/10.21883/JTF.2022.08.52787.70-22
  4. Михайленко М.С., Пестов А.Е., Чернышев А.К., Зорина М.В., Чхало Н.И., Салащенко Н.Н. // ЖТФ. 2023. Т. 93. С. 1046. https://doi.org/10.21883/JTF.2023.07.55767.114-23
  5. Cuerno R., Kim J.-S. // J. Appl. Phys. 2020. V. 128. P. 180902. https://doi.org/10.1063/5.0021308
  6. Frost F., Ziberi B., Schindler A., Rauschenbach B. // Appl. Phys. A. 2008. V. 91. P. 551. https://doi.org/10.1007/s00339-008-4516-0
  7. Hofsäss H. // Appl. Phys. A. 2014. V. 114. P. 401. https://doi.org/10.1007/s00339-013-8170-9
  8. Erb D.J., Pearson D.A., Skere T., Engler M., Bradley M., Facsko S. // Phys. Rev. B. 2024. V. 109. P. 045439. https://doi.org/10.1103/PhysRevB.109.045439
  9. Амиров И.И., Селюков Р.В., Наумов В.В., Горлачев Е.С. // Микроэлектроника. 2021. Т. 50. № 1. С. 3. https://doi.org/10.31857/S0544126921010038
  10. Bradley R.M., Harper J.M. // J. Vac. Sci. Technol.1988. V. 6. P. 2390. https://doi.org/10.1116/1.575561
  11. Shipman P.D., Bradley R.M. // Appl. Surf. Sci. 2012. V. 258. P. 4161. https://doi.org/10.1016/j.apsusc.2011.07.003
  12. Smirnova M.A., Bachurin V.I., Mazaletsky L.A., Pukhov D.E., Churilov A.B., Rudy A.S. // J. Surf. Invest.: X-Ray, Synchrotron, Neutron Tech. 2021. V. 15. P. 150. https://doi.org/10.1134/S1027451022020380
  13. Engler M., Frost F., Müller S., Macko S., Will M., Feder R., Spemann D., Hübner R., Facsko S., Michely T. // Nanotechnology. 2014. V. 25. P. 115303. https://doi.org/10.1088/0957-4484/25/11/115303
  14. Бетц Г., Венер Г. // Распыление твердых тел ионной бомбардировкой. Т. 2. / Ред. Бериш Р.М.: Мир, 1986. C. 24.
  15. El-Atwani O., Norris S.A., Ludwig K., Gonderman S., Allain J.P. // Sci. Rep. 2015. V. 5. P. 18207. https://doi.org/10.1038/srep18207
  16. Чичерская А.Л., Пупышев А.А. // Аналитика и контроль. 2015. Т. 19. С. 230. https://doi.org/10.15826/analitika.2015.19.3.003
  17. Amirov I.I., Izumov M.O., Naumov V.V. // J. Surf. Invest.: X-Ray, Synchrotron, Neutron Tech. 2016. V. 10. P. 855. https://doi.org/10.1134/S1027451016040236
  18. Sobolewski M.A., Olthoff J.K., Wang Y. // J. Appl. Phys. 1999. V. 85. P. 3966. https://doi.org/10.1063/1.370298
  19. Amirov I.I., Izumov M.O., Naumov V.V., Gorlachev E.S. // J. Phys. D. 2021. V. 54. P. 065204. https://doi.org/10.1088/1361-6463/abc3ed
  20. Eckstein W. Computer Simulation of Ion-Solid Interaction. Berlin: Springer, 1991. 279 p. https://doi.org/10.1007/978-3-642-73513-4
  21. Laegreid N., Wehner G.K. // J. Appl. Phys. 1961. V. 32. P. 365. https://doi.org/10.1063/1.1736012
  22. Yamamura Y., Tawara H. // Atomic Data Nucl. Data Tables. 1996. V. 62. P. 149. https://doi.org/10.1006/adnd.1996.0005
  23. Сычева А.А., Воронина Е.Н. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2020. № 8. С. 61. https://doi.org/10.31857/S1028096020080166
  24. Qin X.V., Ting Y-H., Wendt A.E. // Plasma Sources Sci. Technol. 2010. V. 19. P. 065014. https://doi.org/10.1088/0963-0252/19/6/065014
  25. Colligon J.S., Farrell G., Bachurin V.I., Yurasova V.E. // Rad. Effects. 1996. V. 138. P. 195. https://doi.org/10.1080/10420159608211522
  26. Murray J.L., McAlister A.J. // Bull. Alloy Phase Diagrams. 1984. V. 5. P. 74. https://doi.org/10.1007/BF02868729
  27. Shipman P.D., Bradley R.M. // Phys. Rev. B. 2011. V. 84. P. 085420. https://doi.org/10.1103/PhysRevB.84.085420

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Experimental dependences of the sputtering rate of Al (1), AK1 (2) and Si (3) films on the average energy of Ar+ ions.

Жүктеу (76KB)
3. Fig. 2. Energy dependences of Al (1) and Si (2) sputtering coefficients obtained with the TRYDIN programme.

Жүктеу (87KB)
4. Fig. 3. SEM images of the original film (a) and irradiated by Ar+ ions with energy of 60 eV (b). Insets show the images obtained by AFM.

Жүктеу (890KB)
5. Fig. 4. Images of the surface of the initial film (a, b) and after irradiation with Ar+ ions with energy of 45 eV (c, d) obtained using secondary Si+ (a, c) and Al+ (b, d) ions.

Жүктеу (1MB)
6. Fig. 5. Elements of the high-energy part of the Auger spectrum of the surface of the initial AK1 film (a) and after sputtering by Ar+ ions with the energy of 60 eV (b).

Жүктеу (136KB)
7. Fig. 6. Si distribution in the near-surface layer: a - initial film (1) and after sputtering by Ar+ ions with energy E = 100 eV during t = 2 min (2), E = 40 eV, t = 6 min (3); b - initial film (1) and after sputtering by Ar+ ions with energy E = 45 eV during t = 4 (2), 6 (3), 12 min (4).

Жүктеу (218KB)

© Russian Academy of Sciences, 2024