Synthesis and Properties of Poly(4-methyl-2-pentyne) Containing Quaternary Ammonium Salts with Methyl and Ethyl Substituents

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, functionalization of poly(4-methyl-2-pentyne) (PMP) with quaternary ammonium salts was carried out in order to increase CO2 selectivity in its membrane recovery. The introduction of functional groups was carried out by a two-stage method – bromination of the initial polymer and addition of tertiary alkylamines trimethylamine (TMA) and trimethylamine (TEA). It has been established that the optimal amount of introduced functional groups, while maintaining the mechanical properties of the polymer, is up to 5 mol. %. The results of organoelemental analysis and IR spectroscopy confirm the functionalization reaction of the PMP. X-ray diffraction patterns of the samples indicate an increase in the interchain distance in the series initial PMP–brominated PMP–functionalized PMP. TGA data confirm high thermal and thermal-oxidative stability. The coefficients of permeability, solubility and diffusion of PMP samples containing TMA and TEA salts were determined for individual gases. An increased ideal selectivity for the separation of gas pairs CO2/N2 by 2–3 times and CO2/CH4 by 1.5–2 times has been achieved while maintaining the permeability at a high level.

Sobre autores

V. Polevaya

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Autor responsável pela correspondência
Email: polevaya@ips.ac.ru
Russia, 119991, Moscow

A. Kossov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: polevaya@ips.ac.ru
Russia, 119991, Moscow

S. Matson

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: polevaya@ips.ac.ru
Russia, 119991, Moscow

Bibliografia

  1. Yirong Q. // J. Cleaner Production. 2022. V. 341. P. 130 648.
  2. Dietz T., Rosa E.A. // Proceedings of the National Academy of Sciences. 1997. V. 94. № 1. P. 175.
  3. Galeotti M., Salini S., Verdolini E. // Energy Policy. 2020. V. 136. P. 111052.
  4. Dutcher B., Fan M., Russell A.G. // ACS applied materials & interfaces. 2015. V. 7. № 4. P. 2137.
  5. Belaissaoui B., Willson D., Favre E. // Procedia Engineering. 2012. V. 44. P. 1191.
  6. Du N., Park H.B., Dal-Cina M.M., Guiver M.D. // Energy Environ. Sci. 2012. V. 5. P. 7306
  7. Melinda L. Jue, Ryan P. Lively // Reactive & Functional Polymers. 2015. V. 86. P. 88.
  8. Kratochvil A.M., Koros W.J. // Macromolecules. 2008. V. 41. P. 7920.
  9. Low B.T., Chung T.-S., Chen H., Jean Y., Pramoda K.P. // Macromolecules. 2009. V. 42. P. 7042.
  10. Park H.B., Han S.H., Jung C.H., Lee Y.M., Hill A.J. // J. Membr. Sci. 2010. V. 359. P. 11.
  11. Lin H., Wagner E. van, Swinnea J.S., Freeman B.D., Pas S.J., Hill A.J., Kalakkunnath S., Kalika D.S. // J. Membr. Sci. 2006. V. 276. P. 145.
  12. Morisato A., Pinnau I. // J. Membr. Sci. 1996. V. 121. № 2. P. 243.
  13. Merkel T.C., Freeman B.D., Spontak R.J., He Z., Pinnau I., Meakin P., Hill A.J. // Chem. Mater. 2003. V. 15. № 1. P. 109.
  14. Merkel T.C., Freeman B.D., Spontak R.J., He Z., Pinnau I., Meakin D., Hill A.J. // Science. 2002. V. 296. № 5567. P. 519.
  15. Yave W., Shishatskiy S., Abetz V., Matson S., Litvinova E., Khotimskiy V., Peinemann K.-V. // Macromol. Chem. Phys. 2007. V. 208. № 22. P. 2412.
  16. Morisato A., Pinnau I. // J. Membr. Sci. 1996. V. 121. № 2. P. 243.
  17. Wijmans J.G., Baker R.W. // J. Membr. Sci. 1995. V. 107. P.1.
  18. Sakaguchi T., Ito H., Masuda T., Hashimoto T. // Polymer. 2013. V. 54. P. 6709.
  19. Полевая В.Г., Гейгер В.Ю., Матсон С.М., Шандрюк Г.А., Шишацкий С.М., Хотимский В.С. // Высокомолек. соед. Б. 2019. Т. 61. № 5. С. 377.
  20. Polevaya V.G., Vorobei A.M., Pokrovskiy O.I., Shandryuk G.A., Parenago O.O., Lunin V.V., Khotimskiy V.S. // J. Phys. Chem. B. 2017. V. 11. P. 1276.
  21. Xiao M., Liu H., Idem R., Tontiwachwuthikul P., Liang Z. // Applied energy. 2016. V. 184. P. 219.
  22. Суровцев А.А., Петрушанская Н.В., Карпов О.П., Хотимский В.С., Литвинова Е.Г. Пат. 2 228 323 Российская Федерация. 2004.
  23. Хотимский В.С., Матсон С.М., Литвинова Е.Г., Бондаренко Г.Н., Ребров А.И. // Высокомолек. Соед. Сер. А. 2003. Т. 45. № 8. С. 1259.
  24. Wojdyr M. // J. Appl. Cryst. 2010. V. 43. P. 1126.
  25. Shishatskii A.M., Yampol’skii Yu.P., Peinemann K.-V. // J. Membr. Sci. 1996. V. 112. P. 275.
  26. Duan Y., Sun P., Zhang S., Yao Z., Luo X., Ye L.J. // Fuel Chem. Technol. 2015. V. 43. P. 1113.
  27. Plate N.A., Khotimskiy V.S., Teplyakov V.V., Antipov E.M., Yampolskiy Yu.P. // Polym. Sci. U.S.S.R. 1990. V. 32. P. 1053.
  28. Membrane Society of Australasia, Polymer Gas Separation Membrane Database, Available online: https://membrane-australasia.org/member-portal/ polymer-gas-separation-membrane-database/.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (27KB)
3.

Baixar (187KB)
4.

Baixar (6KB)
5.

Baixar (7KB)
6.

Baixar (9KB)
7.

Baixar (245KB)
8.

Baixar (6KB)
9.

Baixar (7KB)
10.

Baixar (9KB)
11.

Baixar (124KB)
12.

Baixar (6KB)
13.

Baixar (7KB)
14.

Baixar (9KB)
15.

Baixar (6KB)
16.

Baixar (7KB)
17.

Baixar (9KB)
18.

Baixar (6KB)
19.

Baixar (7KB)
20.

Baixar (9KB)
21.

Baixar (6KB)
22.

Baixar (7KB)
23.

Baixar (9KB)
24.

Baixar (289KB)

Declaração de direitos autorais © В.Г. Полевая, А.А. Коссов, С.М. Матсон, 2023