Processes of formation of longitudinal profile of a river

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

A general equation of vertical deformations of the longitudinal profile of a river channel is proposed. It describes the change in time of the altitudes of alluvial river bed due to the change in the flow’s transport capacity along the length of the flow; abrasion and erosion of bedrock of the river bottom; the effect of sediment supply from slopes, and the general change in heights in the river basin due to tectonic movements. These processes and effects are described by empirical mathematical functions that depend on time, longitudinal coordinate, hydraulic characteristics of the flow and conditions in the catchment area and on the territory. The components of the general equation and of the mathematical expressions of individual processes are considered and the main combinations of erosion, stability and accumulation conditions in the river channel are obtained.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Sidorchuk

Lomonosov Moscow State University, Faculty of Geography

Хат алмасуға жауапты Автор.
Email: fluvial05@gmail.com
Ресей, Moscow

Әдебиет тізімі

  1. Ananyan A.K. (1962) Forecasting the stable form of the longitudinal profile of the river. In: Rezul’taty kompleksnykh issledovanii po Sevanskoi probleme. Vol. 2. Yerevan: AN ArmSSR (Publ.). P. 154–180 (in Russ).
  2. Antropovsky V.I. (2008) Morfologiya i deformatsiya rusel rek s proyavleniyami karstovo-suffozionnykh protsessov (Morphology and deformation of river channels with manifestations of karst-suffusion processes). Sankt-Peterburg: Izd-vo RGPU im. A.I. Gertsena (Publ.). 117 p. (in Russ).
  3. Baulig A. (1956) Ocherki geomorfologii (Essays on geomorphology). Moscow: Inostr. lit. (Publ.). 262 p. (in Russ).
  4. Chalov R.S. (2002) Mountain rivers and rivers in the mountains: longitudinal profile, morphology, and channel dynamics. Geomorfologiya. No. 3. P. 26–40 (in Russ).
  5. Davis W.M. (1922) Peneplains and the geographical cycle. Geol. Soc. Am. Bull. Vol. 33. No. 3. P. 587–598. https://doi.org/10.1130/GSAB-33-587
  6. Devdariani A.S. (1963) Equilibrium profile and regular regime. In: Voprosy geografii. No. 63. Moscow: Geografgiz (Publ.). P. 33–48 (in Russ).
  7. Dobrovolskaya N.G., Lodina R.V., Chalov R.S. (1991) On the significance of mechanical and biochemical weathering for the channel alluvium composition. Geomorfologiya. No. 1. P. 59–64 (in Russ).
  8. Dokuchaev V.V. (1878) Sposoby obrazovaniya rechnykh dolin Evropeiskoi Rossii (Methods of formation of river valleys of European Russia). Sankt-Petersburg: V. Dermakov (Publ.). 221 p. (in Russ).
  9. Exner F.M. (1920) Zur physik der dünen. Akad. Wiss. Wien Math. Naturwiss. Klasse. Vol. 129(2a). P. 929–952 (in German).
  10. Gao W., Li D., Wang Z.B. et al. (2020) The longitudinal profile of a prograding river and its response to sea level rise. Geophys. Res. Lett. Vol. 47. Iss. 21. P. 1–9. https://doi.org/10.1029/2020GL090450
  11. Golovkinsky N.A. (1865) O posletretichnykh obrazovaniyakh po Volge v ee srednem techenii (On post-Tertiary formations along the Volga in its middle reaches). Kazan: Kazan Univ. (Publ.). 76 p. (in Russ).
  12. Grishanin K.V. (1979) Teoriya ruslovogo protsessa (Theory of the channel process). Moscow: Transport (Publ.). 215 p. (in Russ).
  13. King L.C. (1953) Canons of landscape evolution. Geol. Soc. Am. Bull. Vol. 64. Iss. 7. P. 721–752. https://doi.org/10.1130/0016-7606(1953)64[721: COLE]2.0.CO;2
  14. Lague D. (2014) The stream power river incision model: evidence, theory and beyond. Earth Surf. Processes and Landforms. Vol. 39. No. 1. P. 38–61. https://doi.org/10.1002/esp.3462
  15. Makkaveev N.I. (1955) Ruslo reki i eroziya v ee basseine (River bed and erosion in its basin). Moscow: AN SSSR (Publ.). 346 p. (in Russ).
  16. Makkaveev N.I. (1971) Stok i ruslovye protsessy (Runoff and channel processes). Moscow: MGU (Publ.). 115 p. (in Russ).
  17. Markov K.K. (1948) Osnovnye problemy geomorfologii (Basic problems of geomorphology). Moscow: Geografgiz (Publ.). 344 p. (in Russ).
  18. Nazarov N.N. (1999) Theoretical and applied aspects of studying the patterns of modern formation of karst sections of river valleys. In: Materialy i kratkie soobshcheniya 14 plenuma mezhvuzovskogo koordinatsionnogo soveshchaniya po probleme erozionnykh, ruslovykh i ust’evykh protsessov. Ufa: BGU (Publ.). P. 168–169 (in Russ).
  19. Nazarov N.N., Chalov R.S., Chalov S.R., Chernov A.V. (2006) Longitudinal profiles, morphology and dynamics of river channels in mountain and lowland areas. Geograficheskii vestnik. No. 2(4). P. 37–47 (in Russ).
  20. Panin A.V., Sidorchuk A. Yu. (1992) Morphodynamics of the Alabuga River bed (Kyrgyzstan). In: Doklady sektsii ruslovykh protsessov Nauchnogo Soveta GKNT. Problemy gidravliki i ruslovogo protsessa gornykh rek. Vol. 3. Sankt-Petersburg: Gidrometeoizdat (Publ.). P. 129–138 (in Russ).
  21. Panin A.V., Sidorchuk A. Yu., Chalov R.S. (1990) Catastrophic rates of the fluvial relief formation. Geomorfologiya. No. 2. P. 3–11 (in Russ).
  22. Pfeiffer A.M., Finnegan N.J., Willenbring J.K. (2017) Sediment supply controls equilibrium channel geometry in gravel rivers. Earth, Atmospheric and Planetary Sciences. Vol. 114. No. 13. P. 3346–3351. https://doi.org/10.1073/pnas.1612907114
  23. Potapov I.I., Snigur K.S. (2019) On the solution of the Exner equation for a bottom with a complex morphology. Komp’yuternye issledovaniya i modelirovanie. Vol. 11. No. 3. P. 449–461 (in Russ). https://doi.org/10.20537/2076-7633-2019-11-3-449-461
  24. Royden L., Perron J.T. (2013) Solutions of the stream power equation and application to the evolution of river longitudinal profiles. J. Geophys. Res.: Earth Surf. Vol. 118. Iss. 2. P. 497–518. https://doi.org/10.1002/jgrf.20031
  25. Shamov G.I. (1959) Rechnye nanosy (River sediments). Leningrad: Gidrometeoizdat (Publ.). 378 p. (in Russ).
  26. Sidorchuk A. (2015) Gully erosion in the cold environment: Risks and hazards. Adv. Environ. Res. (Hauppauge, NY, U.S.). Vol. 44. P. 139–192.
  27. Sidorchuk A. (2023) The processes of aggradation and incision in the channels in the Terek River basin, the North Caucasus: The hydrological fluvial archives of the recent past. Quaternary. Vol. 6. No. 3. P. 47. https://doi.org/10.3390/quat6030047
  28. Sidorchuk A. Yu. (1998) Dynamic model of gully erosion. Geomorfologiya. No. 4. P. 28–38 (in Russ).
  29. Sklar L.S., Dietrich W.E. (2001) Sediment and rock strength controls on river incision into bedrock. Geology. Vol. 29. No. 12. P. 1087–1090. https://doi.org/10.1130/0091-7613(2001)029<1087: SARSCO>2.0.CO;2
  30. Stock J.D., Montgomery D.R. (1999) Geologic constraints on bedrock river incision using the stream power law. J. Geophys. Res. Vol. 104. Iss. B3. P. 4983–4993. https://doi.org/10.1029/98JB02139
  31. Stock J.D., Montgomery D.R., Collins B.D. et al. (2005) Field measurements of incision rates following bedrock exposure: Implications for process controls on the long profiles of valleys cut by river debris flows. Geol. Soc. Am. Bull. Vol. 117. Iss. 11/12. P. 174–194. https://doi.org/10.1130/B25560.1
  32. Trofimov A.M., Moskovkin V.M. (1982) Modeling of a stable river-canal system. Geografiya i prirodnye resursy. No. 4. P. 101–107 (in Russ).
  33. Trustrum N.A., Gomez B., Page H.J. et al. (1999) Sediment production, storage and output: the relative role of large magnitude events in steepland catchments. Zeitschrift für Geomorphologie (Suppl.). Vol. 115. P. 71–86.
  34. Velikanov M.A. (1948) Gidrologiya sushi (Hydrology). Leningrad: Gidrometeoizdat (Publ.). 530 p. (in Russ).
  35. Velikanov M.A. (1958) Ruslovoi protsess (osnovy teorii) (Channel process (fundamentals of theory). Moscow: Fizmatgiz (Publ.). 395 p. (in Russ).
  36. Voskresensky S.S., Voskresensky K.S. (1975) The developed longitudinal profile of the river. Geomorfologiya. No. 1. P. 14–22 (in Russ).
  37. Wang Y., Zheng D., Zhang H. (2022) The methods and program implementation for river longitudinal profile analysis – RiverProAnalysis, a set of open-source functions based on the Matlab platform. Sci. China: Earth Sci. Vol. 65. P. 1788–1809. https://doi.org/10.1007/s11430-021-9938-x
  38. Whipple K.X., Tucker G.E. (1999) Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. Vol. 104. Iss. B8. P. 17661–17674. https://doi.org/10.1029/1999JB900120
  39. Wilson A. (2009) Fluvial bedrock abrasion by bedload: process and form. Trinity College. University of Cambridge. A thesis submitted for the degree of Doctor of Philosophy. 242 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Change in channel bottom elevations in the mouth area of the Waiau River (South Island, New Zealand).

Жүктеу (362KB)
3. Fig. 2. Change in minimum levels over time on the Urukh River (Khaznidon gauging station) at the same discharge of 5.0 m3/s (from (Sidorchuk, 2023), with simplifications and additions).

Жүктеу (248KB)
4. Fig. 3. Incision of the Kambileevka River (Olginskoye gauging station) on the tectonically subsiding inclined Ossetian Plain (from (Sidorchuk, 2023), with simplifications and additions).

Жүктеу (129KB)
5. Fig. 4. Change in channel bottom elevations on the Waipaoa River, Kanakanaiya gauging station (North Island, New Zealand).

Жүктеу (369KB)

© Russian Academy of Sciences, 2025