The loess-soil sequence of the Central Ciscaucasia: chronostratigraphy, composition, and sedimentation conditions during the late neopleistocene
- 作者: Sychev N.V.1, Konstantinov E.A.1, Zakharov A.L.1
-
隶属关系:
- Institute of Geography RAS
- 期: 卷 56, 编号 2 (2025)
- 页面: 323-340
- 栏目: ГЕОМОРФОЛОГИЯ ГОР И ПРЕДГОРИЙ
- URL: https://clinpractice.ru/2949-1789/article/view/689295
- DOI: https://doi.org/10.31857/S2949178925020108
- EDN: https://elibrary.ru/GQIXZR
- ID: 689295
如何引用文章
详细
The study presents the results of sedimentological investigation of the core recovered from from the Pervomayskaya-1 (Pm-1) borehole, which revealed the most complete structure of the upland loess-soil series (LSS) in the central Pre-Caucasus. The borehole reached a depth of 13.8 m. Luminescence dating for two samples from the core yielded ages of 62±3 and 102±7 thousand years, attributing the entire studied sequence to the Upper Neopleistocene. Lithostratigraphic units were identified based on macroscopic core examination and geochemical analyses. The Mezin pedocomplex (13.8–9.1 m, MIS 5) consisting of three paleosols was identified at the base of the section. Above it lies a horizon of Valdai loess (9.1–1.2 m, MIS 4–2) of substantial thickness with weak signs of interstadial pedogenesis in its middle part. The section is capped by a Holocene chernozem (1.2–0.0 m, MIS 1) showing signs of anthropogenic transformation in its upper profile. The LSS structure revealed in the Pm-1 core shows stratigraphic unity with previously dated reference sections and boreholes of the Pre-Caucasus LSS: Beglitsa (Bg), Vorontsovka-4 (V-4), Sladkaya Balka-1 (Sb-1), and Otkaznoye-20 (Ot-20). Moreover, the Pm-1 column fits within the main trend of increasing loess thickness and grain size from west to east across the Pre-Caucasus. For the Pm-1 and Ot-20 columns, consistent variations in magnetic susceptibility and grain size were identified. Using these consistent variations as chronostratigraphic markers allowed for a more detailed depth-age model for Pm-1. Based on this model, estimates of loess accumulation rates for the Late Neopleistocene and Holocene were calculated: maximum rates (15.9–17.5 cm/thousand years) correspond to the interval of 36–16 thousand years ago; elevated rates (11.4–12.5 cm/thousand years) align with the interval of 80–40 thousand years ago; low rates (9.1–10.4 cm/thousand years) were recorded in the interval of 128–81 thousand years ago; minimal rates (6.0–6.6 cm/thousand years) correspond to the interval of 13–5 thousand years ago. The intensity of loess accumulation in Pm-1 shows consistency with the most complete LSSs of Eastern Europe, as well as with the mineral dust concentration in Greenland ice core NGRIP.
全文:

作者简介
N. Sychev
Institute of Geography RAS
编辑信件的主要联系方式.
Email: nvsychev25@igras.ru
俄罗斯联邦, Moscow
E. Konstantinov
Institute of Geography RAS
Email: nvsychev25@igras.ru
俄罗斯联邦, Moscow
A. Zakharov
Institute of Geography RAS
Email: nvsychev25@igras.ru
俄罗斯联邦, Moscow
参考
- Antoine P., Rousseau D.D., Moine O. et al. (2009) Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. Quat. Sci. Rev. Vol. 28. Iss. 25–26. P. 2955–2973. https://doi.org/10.1016/j.quascirev.2009.08.001
- Balaev L.G., Tsarev P.V. (1964) Lessovye porody Tsentralʹnogo i Vostochnogo Predkavkazya (Loess rocks of the Central and Eastern Ciscaucasia.) Moscow: Nauka (Publ.). 246 p. (in Russ).
- Banerjee S.K., Hunt C.P., Liu X.M. (1993) Separation of local signals from the regional paleomonsoon record of the Chinese Loess Plateau: A rock‐magnetic approach. Geophys. Res. Lett. Vol. 20. Iss. 9. P. 843–846. https://doi.org/10.1029/93GL00908
- Blaauw M., Christen J.A. (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. Vol. 6. No. 3. P. 457–474. https://doi.org/10.1214/11-BA618
- Blott S.J., Pye K. (2012) Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology. Vol. 59. Iss. 7. P. 2071–2096. https://doi.org/10.1111/j.1365-3091.2012.01335.x
- Bolikhovskaya N.S. (1995) Evolyutsiya lessovo-pochvennoi formatsii Severnoi Evrazii (Evolution of the loess-soil formation of Northern Eurasia) Moscow: MGU (Publ.). 270 p. (in Russ).
- Bosq M., Kreutzer S., Bertran P. et al. (2023) Last Glacial loess in Europe: luminescence database and chronology of deposition. Earth Syst. Sci. Data. Vol. 15. Iss. 10. P. 4689–4711. https://doi.org/10.5194/essd-15-4689-2023
- Chen J., Stevens T., Yang T.B. et al. (2022) Revisiting Late Pleistocene Loess Paleosol Sequences in the Azov Sea Region of Russia: Chronostratigraphy and Paleoenvironmental Record. Front. Earth Sci. Vol. 9. 808157. https://doi.org/10.3389/feart.2021.808157
- Cosentino N.J., Torre G., Lambert F. et al. (2024) Paleo±Dust: quantifying uncertainty in paleo-dust deposition across archive types. Earth Syst. Sci. Data. Vol. 16. Iss. 2. P. 941–959. https://doi.org/10.5194/essd-16-941-2024
- Fainer Yu.B., Lizogubova R.N. (1987) Dissection of loess formation deposits of the steppe Stavropol region and its correlation with formations of the periglacial zone of Eurasia. In: Inzhenerno-geologicheskie osobennosti tsiklichnosti lessov. Moscow: Nauka (Publ.). P. 103–109. (in Russ).
- Fenn K., Prud’Homme C. (2022) Dust deposits: loess. Treatise on Geomorphology. Vol. 7. P. 320–365. https://doi.org/10.3389/feart.2021.808157
- Fick S.E., Hijmans R.J. (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. of Climatology. Vol. 37. Iss. 12. P. 4237–4492. https://doi.org/10.1002/joc.5086
- Frechen M., Oches E.A., Kohfeld K.E. (2003) Loess in Europe-mass accumulation rates during the Last Glacial Period. Quat. Sci. Rev. Vol. 22. Iss. 18-19. P. 1835–1857. https://doi.org/10.1016/S0277-3791(03)00183-5
- Galai B.F. (1992) Litogenez i prosadochnost’ eolovykh lessov (na primere Tsentral’nogo Predkavkaz’ya) [Lithogenesis and subsidence of aeolian loess (on the example of Central Ciscaucasia)]. D. Sc. thesis. Moscow: MGU 38 p. (in Russ).
- Galai B.F., Serbin V.V., Plakhtyukova V.S., Galai O.B. (2016) Genetic analysis of cover loams in Stavropol. Nauka. Innovatsii. Tekhnologii. No. 1. P. 93–106. (in Russ).
- Heller F., Liu T. (1984) Magnetism of Chinese loess deposits. Geophys. J. Int. Vol. 77. Iss. 1. P. 125–141. https://doi.org/10.1111/j.1365-246X.1984.tb01928.x
- Konstantinov E.A., Mazneva E.A., Sychev N.V. et al. (2022а) Variability in the structure and composition of the Upper Quaternary loess of Ciscaucasia (south of the European part of Russia). Geomorfologiya. Vol. 53. No. 3. P. 107–116. https://doi.org/10.31857/S0435428122030075
- Konstantinov E.A., Zakharov A.L., Sychev N.V. et al. (2022б) Loess Accumulation in the Southern Part of European Russia at the End of the Quaternary Period. Herald Russ. Acad. Sci. Vol. 92. P. 342–351. https://doi.org/10.1134/S1019331622030108
- Konstantinov E.A., Zakharov A.L., Selezneva E.V., Filippova K.G. (2023) Morphometric analysis of the large enclosed depression of the Southern East European plain. Geomorfologiya i Paleogeografiya. Vol. 54. No. 1. P. 99–111 (in Russ). https://doi.org/10.31857/S2949178923010073
- Kukla G., An Z. (1987) Loess stratigraphy in central China. Palaeogeogr., Palaeoclimatol., Palaeoecol. Vol. 72. P. 203–225. https://doi.org/10.1016/0031-0182(89)90143-0
- Laag C., Lagroix F., Kreutzer S. et al. (2023) Measuring and evaluating colorimetric properties of samples from loess-paleosol sequences. MethodsX. Vol. 10. 102159. https://doi.org/10.1016/j.mex.2023.102159
- Liang Y., Yang T.B., Velichko A.A. et al. (2016) Paleoclimatic record from Chumbur-Kosa section in Sea of Azov region since marine isotope stage 11. J. of Mountain Sci. Vol. 13. P. 985–999. https://doi.org/10.1007/s11629-015-3738-9
- Lisiecki L.E., Raymo M.E. (2005) A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. Vol. 20. Iss. 1. P. 1–17. https://doi.org/10.1029/2004PA001071
- Maher B.A. (1998) Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeogr., Palaeoclimatol., Palaeoecol. Vol. 137. Iss. 1–2. P. 25–54. https://doi.org/10.1016/S0031-0182(97)00103-X
- Maher B.A., Prospero J.M., Mackie D. et al. (2010) Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Sci. Rev. Vol. 99. Iss. 1-2. P. 61–97. https://doi.org/10.1016/j.earscirev.2009.12.001
- Maher B., Thompson R., Liu X. et al. (1994) Pedogenesis and paleoclimate: interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences: comment. Geology. Vol. 22. No. 9. P. 857–857. https://doi.org/10.1130/0091-7613(1994)022<0857: PAPIOT>2.3.CO;2
- Makeev A., Lebedeva M., Kaganova A. et al. (2021) Pedosedimentary Environments in the Caspian Lowland during MIS5 (Srednaya Akhtuba Reference Section, Russia). Quat. Int. Vol. 590. P. 164–180. https://doi.org/10.1016/j.quaint.2021.03.015
- Marković S.B., Stevens T., Mason J. et al. (2018) Loess correlations between myth and reality. Palaeogeogr., Palaeoclimatol., Palaeoecol. Vol. 509. P. 4–23. https://doi.org/10.1016/j.earscirev.2009.12.001
- Mazneva E., Konstantinov E., Zakharov A. et al. (2021) Middle and Late Pleistocene loess of the Western Ciscaucasia: Stratigraphy, lithology and composition. Quat. Int. Vol. 590. P. 146–163. https://doi.org/10.1016/j.quaint.2020.11.039
- Panin P., Kalinin P., Filippova K. et al. (2023) Paleo-pedological record in loess deposits in the south of the East European plain, based on Beglitsa-2017 section study. Geoderma. Vol. 437. 116567. https://doi.org/10.1016/j.geoderma.2023.116567
- Panin P.G., Timireva S.N., Morozova T.D. et al. (2018) Morphology and micromorphology of the loess-paleosol sequences in the south of the East European plain (MIS 1 – MIS 17). Catena. Vol. 168. P. 79–101. https://doi.org/10.1016/j.catena.2018.01.032
- Perić Z.M., Stevens T., Obreht I. et al. (2022) Detailed luminescence dating of dust mass accumulation rates over the last two glacial-interglacial cycles from the Irig loess-palaeosol sequence, Carpathian Basin. Global and Planetary Change. Vol. 215. 103895. https://doi.org/10.1016/j.gloplacha.2022.103895
- Pye K. (1995) The nature, origin and accumulation of loess. Quat. Sci. Rev. Vol. 14. Iss. 7-8. P. 653–667. https://doi.org/10.1016/0277-3791(95)00047-X
- Ryskov Ya.G., Oleinik S.A., Ryskova E.A., Morgun E.G. (2007) Isotopic composition of sulfur in loess sulfates in Ciscaucasia and adjacent territories as an indicator of the origin of salts. Pochvovedeniye. No. 4. P. 418–427. (in Russ).
- Semikolennykh D.V., Kurbanov R.N., Yanina T.A. (2023) Ingression of the Karangatian Sea into the Manych depression (late Pleistocene). Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. No. 6. P. 96–106 (in Russ). https://doi.org/10.55959/MSU0579-9414.5.78.6.9
- Simonsen M.F., Baccolo G., Blunier T. et al. (2019) East Greenland ice core dust record reveals timing of Greenland ice sheet advance and retreat. Nat. Commun. Vol. 10. 4494. https://doi.org/10.1038/s41467-019-12546-2
- Sprafke T., Schulte P., Meyer-Heintze S. et al. (2020) Paleoenvironments from robust loess stratigraphy using high-resolution color and grain-size data of the last glacial Krems-Wachtberg record (NE Austria). Quat. Sci. Rev. Vol. 248. 106602. https://doi.org/10.1016/j.quascirev.2020.106602
- Sychev N.V. (2023) Paleogeograficheskie obstanovki formirovaniya verkhnechetvertichnykh lessovo-pochvennykh serii Predkavkaz’ya. (Paleogeographical settings for the formation of the Upper Quaternary loess-soil series of Ciscaucasia). Phd thesis. Moscow: IG RAN (Publ.). 27 p. (in Russ).
- Sychev N.V., Konstantinov E.A., Zakharov A.L., et al. (2022) New data on geochronology of the Upper Quaternary loess-soil series in the Terek–Kuma Lowland. Lithology and mineral resources. No. 4. P. 336–347. https://doi.org/10.1134/S0024490222040071
- Thiel C., Buylaert J.P., Murray A. et al. (2011) Luminescence dating of the Stratzing loess profile (Austria) – testing the potential of an elevated temperature post-IR IRSL protocol. Quat. Int. Vol. 234. Iss. 1–2. P. 23–31. https://doi.org/10.1016/j.quaint.2010.05.018
- Trofimov V.T. (Ed.) (2008) Opornye inzhenerno-geologicheskie razrezy lessovykh porod Severnoi Evrazii. (Reference engineering-geological sections of loess rocks of Northern Eurasia). Moscow: KDU (Publ.). 315 p. (in Russ).
- Udartsev V.P., Bolikhovskaya N.S., Virina E.I. (1989) Reference sections, chronostratigraphy and paleogeography of loess strata of the Cis-Caucasian loess region. In: Inzhenernaya geologiya lessovykh porod: tezisy dokladov vsesoyuznogo soveshchaniya. Rostov-na-Donu, 1989 g. Vol. 2. Moscow: AN SSSR (Publ.). P. 102–103. (in Russ).
- Urusevskaya I.S. (Ed). (2009) Karta pochvenno-ekologicheskogo raionirovaniya Rossiiskoi Federatsii masshtaba 1:8 000 000. Tsifrovaya versiya – https://soil-db.ru/map?name=eco. (Map of soil-ecological zoning of the Russian Federation at a scale of 1:8 000 000. Digital version – https://soil-db.ru/map?name=eco).
- Velichko A.A., Borisova O.K., Zakharov A.L. et al. (2017) Landscape Changes in the Southern Russian Plain in the Late Pleistocene: A Case Study of the Loess-Soil Sequence in the Azov Sea Region. Izvestiya Rossiiskoi akademii nauk. Seriya geograficheskaya. No. 1. P. 74–83 (in Russ). https://doi.org/10.15356/0373-2444-2017-1-74-83
- Velichko A.A., Morozova T.D. (2010) Basic features of Late Pleistocene soil formation in the East European Plain and their paleogeographic interpretation. Eurasian Soil Sci. Vol. 43. P. 1535–1546. https://doi.org/10.1134/S1064229310130120
- Velichko A.A., Morozova T.D., Borisova O.K. et al. (2012) Development of the steppe zone in Southern Russia based on the reconstruction from the loess-soil formation in the Don-Azov Region. Dokl. Earth Sci. Vol. 445. No. 2. P. 999–1002. https://doi.org/10.1134/S1028334X12080107
- Virina E.I., Faustov S.S., Heller F. (2000) Magnetism of loess-palaeosol formations in relation to soil-forming and sedimentary processes. Phys. Chem. Earth. Part A: Solid Earth and Geodesy. Vol. 25. Iss. 5. P. 475–478. https://doi.org/10.1016/S1464-1895(00)00073-9
- Yanina T.A., Svitoch A.A., Kurbanov R.N. et al. (2017) Aleogeographic analysis of the results of optically stimulated luminescence dating of Pleistocene deposits of the Lower Volga Area. Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. No. 1. P. 20–28. (in Russ).
- Zakharov A.L., Konstantinov E.A. (2019) Structure of Large Flat-Bottom Depressions on Loess Interfluves of Eastern Azov Region (on the Example of “Chervonaya Pad”). Izvestiya Rossiiskoi akademii nauk. Seriya geograficheskaya. No. 4. P. 85–96 (in Russ). https://doi.org/10.31857/S2587-55662019485-96
补充文件
