Нейросетевой подход к анализу необработанных данных научных статей на примере оптических свойств наночастиц нитрида бора

А.Р. Резникова, А.В. Фролова

Тольяттинский государственный университет, Тольятти, Россия

Обоснование. Современные научные исследования сопровождаются значительным объемом данных, включая необработанные спектры и текстовые описания экспериментов. Традиционные методы ручного анализа требуют больших временных затрат и часто страдают от субъективности оценок. Исследования показывают, что в 72 % публикаций отсутствуют полные описания экспериментальных условий, что существенно затрудняет воспроизводимость результатов. Эти проблемы особенно актуальны для исследований в области материаловедения, таких как изучение оптических свойств нано- и микрочастиц нитрида бора.

Цель — разработка нейросетевого метода, позволяющего автоматизировать анализ научных статей, сочетая обработку текстовой информации и данных инфракрасной спектроскопии. Метод должен обеспечивать высокую точность извлечения ключевых параметров экспериментов и эффективную интеграцию разнородных данных.

Методы. В исследовании использован комплексный подход, объединяющий современные методы обработки естественного языка и анализа спектральных данных. Для семантического анализа текстов применялись специализированные модели SciBERT и ChemBERTa, предобученные на научных и химических текстах соответственно. Обработка спектров инфракрасного поглощения осуществлялась с помощью сверточных нейронных сетей, показавших высокую эффективность в распознавании спектральных паттернов. Особое внимание было уделено разработке гибридной архитектуры, сочетающей возможности трансформерных моделей для работы с текстами и CNN для анализа спектров. В работе использовались такие инструменты, как ChemDataExtractor для извлечения химических данных и RDKit для работы с молекулярными структурами. Данные собирались через Semantic Scholar, а их тематическая кластеризация выполнялась методом k-means.

Результаты. Разработанная система продемонстрировала высокую эффективность при анализе научных публикаций. На тестовой выборке из 100 статей достигнута точность 89 % при полноте данных 84 %. Временные затраты на обработку сократились с 3,5 часов при ручном анализе до менее 15 минут при использовании автоматизированной системы. Для анализа спектральных данных точность распознавания ключевых паттернов составила 91 %. В табл. 1 представлено сравнение эффективности различных NLP-моделей, используемых в работе.

Таблица 1. Сравнительный анализ эффективности NLP-моделей

Параметр	BERT	SciBERT	ChemBERTa
Точность	75 %	89 %	91 %
Область применения	Общие тексты	Научные статьи	Химические данные

Выводы. Разработанный нейросетевой метод обеспечивает существенное повышение эффективности анализа научных публикаций за счет автоматизации процессов извлечения и интеграции данных. Система позволяет стандартизировать анализ экспериментальных условий, повысить воспроизводимость исследований и значительно сократить временные затраты. Перспективными направлениями дальнейших исследований являются развитие мультимодальных моделей и интеграция системы с электронными лабораторными журналами.

Ключевые слова: машинное обучение; инфракрасная спектроскопия; нитрид бора; обработка естественного языка; мультимодальный анализ.

Сведения об авторах:

Анастасия Романовна Резникова — студентка, ПИб-2106a; Тольяттинский государственный университет, Тольятти, Россия. E-mail: stasyrez@qmai.com

Анастасия Валерьевна Фролова — студентка, ПИб-2106а; Тольяттинский государственный университет, Тольятти, Россия. E-mail: fro1owa.anas7@yandex.ru

Сведения о научном руководителе:

Илья Михайлович Соснин — кандидат физико-математических наук, старший научный сотрудник; Тольяттинский государственный университет, Тольятти, Россия. E-mail: i.sosnin@tltsu.ru