СЕКЦИЯ «МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ЭКОНОМИКЕ»

Модели и анализ рыночного риска российских фондовых активов

М.А. Бородина

Самарский государственный технический университет, Самара, Россия

Обоснование. В современных условиях глобальной нестабильности и высокой волатильности финансовых рынков эффективная оценка рыночного риска приобретает особую значимость. Инвесторы, стремящиеся сохранить и приумножить капитал, нуждаются в инструментах, позволяющих учитывать как системные, так и специфические риски. Особое внимание уделяется показателям, способным отражать уровень нестабильности и глубину потенциальных потерь, таким как стандартное отклонение (СКО), максимальная просадка (*Mdd*), Value-at-Risk (*VaR*), Conditional *VaR* (*CVaR*), а также коэффициенты эффективности инвестиций, включая коэффициенты Шарпа и Сортино. Актуальность темы обусловлена необходимостью адаптации классических и современных методов анализа к условиям российского фондового рынка [1].

Цель — проведение комплексного анализа рыночного риска инвестиционного портфеля с использованием современных статистических и программных методов и разработка практических рекомендаций по управлению риском.

Для достижения цели были поставлены следующие задачи:

- проанализировать природу и классификацию рыночного риска;
- исследовать влияние риска на инвестиционные решения;
- рассчитать ключевые показатели: VaR, CVaR, Mdd, CKO;
- рассчитать коэффициенты эффективности (Sharpe Ratio, Sortino Ratio);
- сравнить поведение активов в периоды роста и падения рынка [2, 3];
- реализовать оптимизацию портфеля с применением Python-библиотек (в частности, PyPortfolioOpt);
- дать практические рекомендации по управлению портфельным риском.

Методы. В качестве методологической основы исследования были использованы математические модели оптимизации портфеля, направленные на эффективное соотношение доходности и риска. В работе реализованы три ключевых подхода:

1. Модель максимизации коэффициента Шарпа.

Цель данной модели — формирование портфеля, обеспечивающего наибольшее отношение избыточной доходности к общему риску. Математическая постановка задачи представлена следующим образом:

$$\max \frac{\omega^T \mu - r_f}{\sqrt{\omega^T \Sigma \omega}},$$

где ω — вектор долей активов в портфеле, μ — вектор ожидаемых доходностей, \sum — ковариационная матрица доходностей активов, r_f — безрисковая ставка доходности.

Ограничения:

$$\sum_{i=1}^{n} \omega_i = 1, \, \omega i \geq 0 \, \forall i.$$

Данная модель ориентирована на получение наилучшей компенсации за принятый риск, что особенно актуально в условиях нестабильных рынков.

2. Модель минимизации условного Value-at-Risk (CVaR).

Цель модели — снижение средних потерь в худших сценариях при заданном уровне доверия α . Математически задача формулируется как:

$$\min CVaR_{\alpha}(\omega)$$
,

где $CVaR_{\alpha}(\omega)$ — условная стоимость под риском портфеля на уровне доверия α , отражающая ожидаемые потери при превышении порога VaR.

Ограничения:

$$\sum_{i=1}^{n} \omega_i = 1, \, \omega i \geq 0 \, \forall i .$$

Дополнительно могут накладываться лимиты на вес активов (например, $\omega_i^{\min} \leq \omega_i \leq \omega_i^{\max}$) для учета требований инвестора или нормативных ограничений.

3. Модель оптимизации с ограничением на коэффициент В.

Модель направлена на минимизацию общей дисперсии портфеля с учетом ограничения по систематическому риску относительно рыночного индекса:

$$\min \omega^T \Sigma \omega$$

при условиях:

$$\sum_{i=1}^{n} \omega_{i} = 1, \, \omega_{i} \geq 0 \, \forall i, \, \beta(\omega) \leq \beta_{t \arg et},$$

где $\beta(\omega)$ — бета-показатель портфеля, определяемый как линейная комбинация индивидуальных бета-коэффициентов активов. Это условие позволяет формировать портфель с контролируемой чувствительностью к рыночным движениям, снижая воздействие макроэкономических шоков.

Результаты. В результате проведенного исследования и применения трех моделей оптимизации инвестиционного портфеля были получены следующие основные результаты:

- 1. Было произведено сравнение активов в периоды роста и падения рынка.
- 2. Модель максимизации коэффициента Шарпа позволила сформировать портфель с наиболее эффективным соотношением риск/доходность. Полученный портфель демонстрировал высокий коэффициент Шарпа и умеренный уровень риска, что делает его подходящим для инвесторов с умеренной склонностью к риску.
- 3. Модель минимизации *CVaR* показала, что возможно значительно снизить потенциальные потери в стрессовых рыночных ситуациях. Портфель, сформированный по этому критерию, имел наименьшие значения условного риска (*CVaR*) и максимальной просадки (*Mdd*), что указывает на его защитный характер.
- 4. Модель с ограничением по β-коэффициенту позволила создать портфель с пониженной чувствительностью к общерыночным колебаниям. Это обеспечило более стабильную доходность при высокой волатильности рынка, особенно в период его падения.
- 5. Сравнительный анализ показателей риска (стандартное отклонение, *CVaR*, *Mdd*, коэффициенты Шарпа и Сортино) продемонстрировал, что выбор модели напрямую зависит от целей инвестора: от максимизации доходности до минимизации потенциальных убытков.

Таким образом, в работе удалось показать эффективность разных подходов к управлению рыночным риском в зависимости от инвестиционной стратегии и допустимого уровня риска.

Таблица 1. Результаты финансовых метрик по акциям за 2020 год (период роста)

2020 г., рост	SBER	GAZP	SMLT	LKOH	YDEX	Т	ROSX	VTBR	XVTK	MTLR
Коэф. Шарпа	0,0106	-0,0470	-0,024	-0,0232	0,1153	0,0771	-0,0040	-0,0401	0,0024	0,0352
CVaR	0,0629	0,0473	0,0105	0,0853	0,0545	0,1027	0,0791	0,0589	0,0667	0,1028
β	1,0172	0,S5S2	-0,0159	1,4030	0,5578	0,8784	1,3769	0,9552	1,0699	1,0240
σ	0,0233	0,0188	0,0059	0,0284	0,0226	0,0342	0,0270	0,0212	0,0266	0,0394
VaR	0,0333	0,0310	0,0097	0,0467	0,0372	0,0562	0,0443	0,0345	0,0437	0,0648
Коэф. Сортино	0,0143	-0,0640	-0,0403	-0,0291	0,1658	0,0852	-0,0049	-0,0473	0,0035	0,0552
MDD	-0,3499	-0,3986	-0,0234	-0,4411	-0,2590	-0,5063	-0,5187	-0,4351	-0,4656	-0,4962

14-25 апреля 2025 г.

Таблица 2. Результаты финансовых метрик по акциям за 2022 год (период падения)

2022 г., падение	SBER	GAZP	SMLT	LKOM	YDEX	Т	ROSX	VTBR	NVTK	MTLR
Коэф. Шарпа	-0,0647	-0,0557	-0,0337	-0,0670	-0,0702	-0,0562	-0,0625	-0,0822	-0,0746	0,0051
CVaR	0,1432	0,1544	0,1922	0,1009	0,1240	0,1342	0,1613	0,1687	0,1056	0,1646
β	1,0830	0,9729	1,0515	0,7701	1,0344	1,0707	1,0537	1,0962	0,8549	1,3057
σ	0,0413	0,0453	0,0545	0,0320	0,0446	0,0514	0,0384	0,0418	0,0355	0,0509
VaR	0,0679	0,0745	0,0596	0,0526	0,0734	0,0845	0,0632	0,0687	0,0589	0,0838
Коэф. Сортино	-0,0642	-0,0594	-0,0355	-0,0770	-0,0753	-0,0709	-0,0610	-0,0790	-0,0885	0,0056
MDD	-0,6673	-0,5510	-0,6072	-0,5253	-0,6906	-0,7451	-0,6559	-0,6702	-0,6452	-0,5674

Выводы. Проведенное исследование подтверждает, что использование современных методов оценки рыночного риска и эффективности инвестиций позволяет принимать более обоснованные инвестиционные решения.

Рассчитанные показатели — VaR, CVaR, Mdd, CKO, а также коэффициенты Шарпа и Сортино — дают комплексную картину рисков и потенциальной доходности. Оптимизация портфеля с помощью инструментов Python позволяет не только минимизировать потери в условиях нестабильности, но и повысить инвестиционную эффективность. Повышенные значения коэффициентов Шарпа и Сортино после пересборки портфеля подтверждают улучшение соотношения риск/доходность. Полученные выводы могут быть использованы как индивидуальными, так и институциональными инвесторами в целях совершенствования риск-менеджмента и формирования устойчивых стратегий на нестабильных рынках.

Ключевые слова: рыночный риск; стандартное отклонение (СКО); максимальная просадка (Mdd); Value-at-Risk (VaR); Conditional VaR (CVaR); коэффициент Шарпа; коэффициент Сортино.

Список литературы

- 1. Маляров А.Н. Индивидуальное инвестирование на фондовых рынках. Самара: Изд-во СамГТУ, 2022. 400 с. doi: 10.23682/122201
- 2. moex.com [Электронный ресурс]. Индекс МосБиржи. Режим доступа: https://www.moex.com/ru/index Дата обращения: 10.04.2025.
- 3. finam.ru [Электронный ресурс]. Котировки. Режим доступа: https://www.finam.ru Дата обращения: 10.04.2025.

Сведения об авторе:

Мария Алексеевна Бородина — студентка 2-го курса, группа 110М, институт автоматики и информационных технологий; Самарский государственный технический университет, Самара, Россия. E-mail: mailto:mari.borodina.01@bk.ru

Сведения о научном руководителе:

Анатолий Николаевич Маляров — доцент, кандидат технических наук; Самарский государственный технический университет, Самара, Россия. E-mail: mailto:gman53@yandex.ru