СЕКЦИЯ «ДИНАМИКА, БАЛЛИСТИКА, УПРАВЛЕНИЕ ДВИЖЕНИЕМ ЛЕТАТЕЛЬНЫХ АППАРАТОВ»

Анализ влияния атмосферы на движение космических аппаратов, расположенных на низких околоземных орбитах

О.Д. Жалдыбина, М.Р. Морданов

Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия

Обоснование. В настоящее время наблюдается растущая тенденция к применению малых космических аппаратов (МКА) для дистанционного зондирования Земли (ДЗЗ). Согласно актуальной классификации, к малым относят спутники массой до 1000 кг. Ключевым преимуществом МКА являются их оптимальные массогабаритные характеристики.

Развитие современных технологий и процессы миниатюризации значительно расширяют возможности МКА в плане производительности целевой аппаратуры и функциональности платформы.

Доступность компонентной базы и снижение стоимости производства сделали возможным создание МКА студенческими коллективами и частными компаниями. Современные опытно-технологические и студенческие МКА зачастую разрабатываются без корректирующей двигательной установки (КДУ), поскольку плотная компоновка МКА не всегда позволяет разместить двигатель на борту. В связи с этим актуальной становится задача увеличения срока баллистического существования МКА без КДУ.

Цель — анализ воздействия солнечной активности и плотности остаточной атмосферы на космические аппараты с высотой орбиты менее 1000 км для увеличения срока баллистического существования МКА без КДУ.

Методы. Для эффективного управления орбитальным движением и прогнозирования положения спутника необходимо иметь точные данные о его траектории и параметрах орбиты. Для определения эволюции орбиты КА используются навигационные данные в формате TLE, которые содержат в себе следующие орбитальные параметры спутника:

- средняя аномалия (η);
- аргумент перигея (ω);
- наклонение орбиты (*i*);
- эксцентриситет орбиты (e);
- долгота восходящего узла (Ω);
- среднее движение (n).

На основе данных TLE МКА «АИСТ-2Д» [1] была разработана специальная программа для обработки двухстрочных орбитальных элементов. В результате работы программы «сырые» данные преобразуются в удобную табличную форму, пример которой представлен на рис. 1.

	Time	Inclination	Right ascension of the ascending node	Eccentricity	The pericenter argument	Revolutions per day	Semi-major axis
0	2016-04-29 06:56:42.534816	97.2725	25.4306	0.001113	259.3700	15.290596	485759.145602
1	2016-04-29 08:41:46.348800	97.2730	25.4975	0.001102	259.3602	15.290633	485748.183010
2	2016-04-29 15:56:25.113120	97.2728	25.7948	0.001102	257.3033	15.291220	485572.655964
3	2016-04-29 15:56:25.196064	97.2748	25.7960	0.001087	257.9190	15.291084	485613.406797
4	2016-04-29 15:56:25.299744	97.2760	25.7984	0.001084	260.2836	15.290861	485679.998883

Рис. 1. Набор обработанных TLE данных МКА «АИСТ-2Д»

Используя данные об орбитальном движении спутника за весь период его функционирования, были построены следующие временные зависимости: аргумент перигея от времени, наклонение орбиты от времени, эксцентриситет от времени, долгота восходящего узла от времени.

Используя закон Кеплера о движении планет, было рассчитано значение большой полуоси орбиты МКА [2]:

$$a = \frac{\mu^{1/3}}{\left(\frac{2\pi n}{86400}\right)^{2/3}} \tag{1}$$

где μ — гравитационный параметр Земли; n — среднее движение, полученное из TLE.

Одной из причин быстрой эволюции орбиты могут служить циклы повышенной солнечной активности, которые повторяются каждые 11 лет. Следует отметить, что такие периоды приводят к изменению плотности атмосферы, что, в свою очередь, может вызывать резкое снижение высоты орбиты МКА. На рис. 2 представлен график зависимости солнечной активности от времени за весь срок баллистического существования МКА «АИСТ-2Д».

Для увеличения срока баллистического существования МКА на орбите предлагается применять метод пространственного управления ориентацией. Предполагается, что в процессе эксплуатации МКА может функционировать в трех основных режимах ориентации:

- режим солнечной ориентации;
- режим для проведения съемки и обеспечения связи с наземным комплексом управления;
- режим с минимальной площадью миделя.

Проведя моделирование по методике ГОСТ-Р 25645.166—2004 [3], были получены зависимости высоты орбиты МКА «АИСТ-2Д» для трех вариантов ориентации, изображенных на рис. 3.

Результаты. В ходе выполнения работы были получены следующие результаты:

- проведен анализ влияния солнечной активности и плотности остаточной атмосферы на эволюцию орбитальных параметров КА;
- проведено моделирование орбитального движения при разных вариантах ориентации МКА «АИСТ-2Д»;
- предложен способ увеличения срока баллистического существования спутников на низкой околоземной орбите;
- получен патент на программу для ЭВМ.

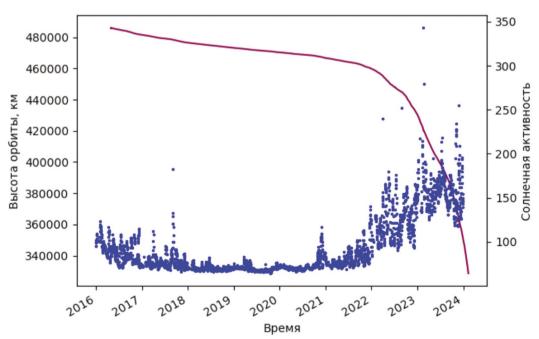


Рис. 2. График зависимости солнечной активности от времени за весь срок существования МКА «АИСТ-2Д»

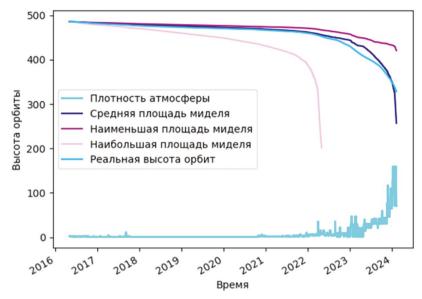


Рис. 3. График зависимости высоты орбиты при различных вариантах ориентации МКА от времени

Выводы. В рамках работы проанализировано влияние солнечной активности и плотности остаточной атмосферы на изменение орбитальных параметров малых космических аппаратов, функционирующих на низких околоземных орбитах. В качестве примера рассматривался малый космический аппарат «АИСТ-2Д». Доказано, что применение разработанной циклограммы функционирования и соответствующих режимов ориентации позволяет увеличить срок баллистического существования МКА «АИСТ-2Д» на 278 дней. Данная работа может быть использована студенческими конструкторскими бюро для увеличения срока баллистического существования МКА без корректирующих двигательных установок.

Ключевые слова: малый космический аппарат; дистанционное зондирование Земли; студенческие спутники; остаточная атмосфера; солнечная активность.

Список литературы

- 1. Кирилин А.Н., Ахметов Р.Н., Шахматов Е.В., и др. Опытно-технологический малый космический аппарат «АИСТ-2Д». Самара: Изд-во СамНЦ РАН, 2017. 324 с. EDN: YVNQOE
- 2. Мирер С.А. Механика космического полета. Орбитальное движение. Москва: Резолит, 2007. 267 с. EDN: QNTMBN
- 3. consultant.ru [Электронный ресурс] Атмосфера Земли верхняя. Модель плотности для баллистического обеспечения полетов искусственных спутников Земли (утв. Постановлением Госстандарта РФ от 09.03.2004 № 93-ст). Режим доступа: https://consultant.ru/document/cons_doc_LAW_257620_Дата обращения: 06.07.2024.

Сведения об авторах:

Ольга Дмитриевна Жалдыбина — аспирант, группа A1_02.05.13, институт авиационной и ракетно-космической техники; Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия. E-mail: olya-zhaldybina@mail.ru Марсель Ринатович Морданов — инженер учебной лаборатории наземных испытаний летательных аппаратов; Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия. E-mail: mordanov.mr@ssau.ru

Сведения о научном руководителе:

Максим Александрович Иванушкин — руководитель киберфизической фабрики малых космических аппаратов, ассистент кафедры космического машиностроения имени генерального конструктора Д.И. Козлова; Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия. E-mail: ivanushkin.ma@ssau.ru