СЕКЦИЯ «ЦИФРОВЫЕ ТЕХНОЛОГИИ В МАШИНОСТРОЕНИИ: МАТЕРИАЛОВЕДЕНИЕ И МЕТАЛЛООБРАБОТКА»

Влияние эксплуатационных факторов на прочностные характеристики стальных канатов

Е.Е. Вдовина

Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия

Обоснование. Механические испытания стальных канатов важны для оценки их остаточного ресурса, предотвращения аварий из-за потери прочности и разработки норм безопасной эксплуатации.

Цель — определить влияние эксплуатационного износа на механические свойства стальных канатов.

Методы. Стальные канаты и пряди стальных канатов были испытаны на разрыв на универсальной испытательной машине TIRAtest 2800, проволоки внешней оплетки стального каната были испытаны на разрыв на универсальной испытательной машине H5KT-0536 Tinius Olsen и на трехточечный изгиб прибором для перегиба НГ 1–2.

Объект исследования: канаты стальные марки У8 оцинкованные гальваническим методом (ГОСТ 1435-99 [1]), взятые с участка аварии на ОАО «Завод Продмаш». Условия эксплуатации: нагрузка — 10 т, время работы — 2 месяца, рабочая среда группы 1 (соляная кислота) [2].

В результате аварии на линии горячего цинкования произошел обрыв в месте крепления траверсы, несущей цинкуемые изделия, одного из двух стальных канатов.

Образцы были отобраны из нерабочей зоны каната (намотана на барабан), из рабочей зоны на расстоянии 10 м, 6 м и 2 м от крепления траверсы с подвергшегося разрушению и с исходного канатов. Было испытано на разрыв по три образца подвергшегося разрушению и целого стальных канатов, по три образца прядей подвергшегося разрушению и целого канатов, по три образца проволок внешней оплетки подвергшегося разрушению и целого канатов; на перегиб было испытано также по три образца проволок внешней оплетки подвергшегося разрушению и целого канатов.

Результаты. В ходе испытаний на разрыв (рис. 1) были получены значения снижения предела прочности разрушенного каната — на 58 % (с 5766 до 2416 МПа), для отдельных прядей и проволок снижение составило 70 % (с 2416 до 1933 МПа) и 40 % (с 1610 до 955 МПа) соответственно.

Рис. 1. Процесс испытания пряди стального каната на разрыв

14-25 апреля 2025 г.

В ходе испытаний на перегиб разрушенный канат выдерживал в 3 раза меньше циклов перегиба по сравнению с целым (9 циклов против 27).

Выводы. В результате износа при эксплуатации в агрессивной среде (контакт с соляной кислотой и ее парами) и механического воздействия (трения) резко падают прочностные характеристики материала (снижение предела прочности для каната на 58 %, для пряди — на 70 % и на 40 % — для проволоки) и его механические свойства (уменьшение циклов перегиба с 27 до 9), что и приводит к обрыву каната до истечения срока эксплуатации изделия. Причиной снижения прочностных характеристик каната является водородное охрупчивание, вызванное проникновением водорода в металл во время работы в парах соляной кислоты [3].

Ключевые слова: стальной канат; износ стального каната; эксплуатационные факторы; водородное охрупчивание; механические испытания.

Список литературы

- 1. ГОСТ 1435-99. Прутки, полосы и мотки из инструментальной нелегированной стали. Общие технические условия. Москва: Издательство стандартов, 2001. 25 c. https://promgroupchel.ru/upload/iblock/5e6/GOST-1435_99.pdf?ysclid=mg6dk76khe19221626
- 2. ТР ТС 032/2013. О безопасности оборудования, работающего под избыточным давлением. Москва: Стандартинформ, 2014. 120 с.
- 3. Синютина С.Е., Вигдорович В.И. Некоторые аспекты наводораживания металлов // Вестник российских университетов. Maтематика. 2002. №1. URL: https://cyberleninka.ru/article/n/nekotorye-aspekty-navodorazhivaniya-metallov

Сведения об авторе:

Елизавета Евгеньевна Вдовина — студентка, группа 4425-280302D, институт естественных и математических наук; Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия. E-mail: Elizabeth.Elizabeth2002@yandex.ru

Сведения о научном руководителе:

Ольга Сергеевна Бондарева — кандидат технических наук, доцент; Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия. E-mail: osbond@yandex.ru