СЕКЦИЯ «ТЕХНОЛОГИЯ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ МАШИН»

Математическое моделирование и конечно-элементный анализ процесса фрезерования пружинной стали 65Г

В.А. Зотов

Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия

Обоснование. Исследования обработки материалов являются фундаментом для развития высокотехнологичных отраслей. Особое внимание уделяют токарной и фрезерной обработке. Оптимизация этих процессов позволяет снизить затраты и повысить эффективность предприятия, устранив узкие места [1–3]. Использование же конечно-элементного моделирования позволяет рационализировать выбор технологических параметров и снизить материальные затраты на проведение реальных испытаний.

Цель — разработать конечно-элементную математическую модель, описывающую процесс фрезерования пружинной стали 65Г.

Методы. Для разработки конечно-элементной модели применена программа Abaqus CAE. Для описания процесса фрезерования используется уравнение Джонсона—Кука. Оно позволяет описывать сложное поведение материалов при экстремальных условиях. Уравнение включает три основных компонента: деформационное упрочнение, описывающее рост напряжений при увеличении пластической деформации; зависимость прочности от скорости деформации, отражающая реакцию материала на высокие скорости нагружения; термическое разупрочнение, характеризующее снижение прочности при нагреве. Эти эффекты в совокупности возникают при резании: материал подвергается быстрым деформациям, нагреву из-за трения и пластической деформации, а также наклепу [4].

Результаты. На данный момент реализована следующая расчетная схема, представленная на рис. 1. Применен явный динамический анализ (эксплицитный метод), поскольку данный метод оптимален для моделирования высокоскоростных переходных процессов (таких как фрезерование) и обеспечивает точный учет контактных взаимодействий, разрушения материала и нелинейных эффектов.

Моделирование инструмента. Инструмент упрощен до абсолютно твердого тела (без учета деформаций). Для задания движения определены: опорная точка; параметры вращательного и поступательного движения.

Подготовка модели. Создан прямоугольный блок — геометрическая модель заготовки для фрезерования. В зоне резания выполнено адаптивное сгущение сетки с учетом геометрии фрезы и распределения силовых нагрузок в процессе обработки. В результате получено повышение точности моделирования. Включена функция теплосиловой связанный анализ (Coupled Temp-Displacement) и задана теплопроводность, удельная теплоемкость и коэффициент теплового расширения материала.

Контактное взаимодействие моделировалось с использованием опции General Contact, где были заданы механические свойства контакта и условия трения.

Отделение стружки: моделирование удаления материала через «удаление элементов» (Element Deletion) Кинематика и силовые воздействия. Движение инструмента: задано вращение шпинделя с технологически обоснованной угловой скоростью. Подача инструмента: определена поступательная скорость перемещения вдоль траектории обработки.

Граничные условия. Фиксация заготовки: необрабатываемые участки заготовки из стали 65Г жестко закреплены для исключения нежелательных перемещений.

Параметры численного моделирования. Временной шаг: установлен равным 5 с, что обеспечивает сходимость решения при приемлемых вычислительных затратах.

Материальная модель: использованы параметры уравнения Джонсона—Кука для стали 65Г (ГОСТ 14959-79). Моделирование выполнено с учетом реальных физических свойств стали 65Г: химический состав,

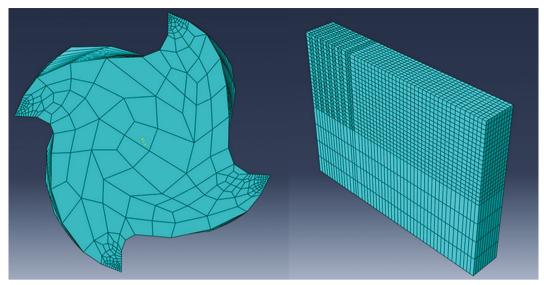


Рис. 1. Упрощенная модель инструмента и заготовки

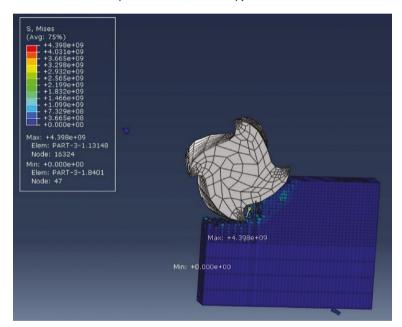


Рис. 2. Процесс фрезерования в Abaqus CAE

механические характеристики, предел прочности, относительное удлинение и твердость. Результаты работы модели представлены на рис. 2.

Выводы. Созданная в программном обеспечении ABAQUS имитационная модель резания 65Г реализует моделирование траектории инструмента. В пределах допустимой погрешности рассчитаны фрезерные усилия и остаточные напряжения. В будущем предполагается использование моделей реального инструмента [5].

Ключевые слова: математическая модель; конечно-элементный анализ; пружинная сталь 65Г; САЕ; фрезерование.

Список литературы

- 1. Братухин А.Г., Язов Г.К., Карасев Б.Е., и др. Современные технологии в производстве газотурбинных двигателей. Москва: Машиностроение, 1997. 416 с. ISBN: 5-217-02875-0
- 2. Сулима А.М., Шулов В.А., Ягодкин Ю.Д. Поверхностный слой и эксплуатационные свойства деталей машин. Москва: Машиностроение, 1988. 240 с. ISBN: 5-217-00060-0
- 3. Митряев К.Ф. Повышение эксплуатационных свойств деталей путем регулирования состояния поверхностного слоя при механической обработке: учебное пособие. Куйбышев: КуАИ, 1986. 91 с.

- 4. Скуратов Д.Л., Трусов В.Н. Обработка конструкционных материалов. Процессы резания и режущие инструменты. Ч. 1. Самара: Самарский государственный аэрокосмический университет им. С.П. Королева, 2012. 196 с. EDN: WBIBHZ
- 5. Павлов В.Г., Штырлов А.Е., Зотов В.А. Адаптация математической модели оценки параметров шероховатости при фрезеровании сплавов Д16 и Л63 // Климовские чтения-2024: перспективные направления развития авиадвигателестроения: сборник статей научно-технической конференции. Санкт-Петербург: Скифия-принт, 2024. С. 299–304.

Сведения об авторе:

Владислав Александрович Зотов — студент, группа 3413-240305D, институт двигателей и энергетических установок; Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия. E-mail: vlad198189@gmail.com

Сведения о научном руководителе:

Дмитрий Викторович Евдокимов — кандидат технических наук, доцент, доцент кафедры технологий производства двигателей; Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия. E-mail: evdokimov.dv@ssau.ru