Теоретическое исследование работы двутавровой балки с различным усилением

Д.В. Мурзина, А.В. Степина

Самарский государственный технический университет, Самара, Россия

Обоснование. Использование металлоконструкций при возведении зданий и сооружений — одно из наиболее динамично развивающихся направлений в строительной отрасли. Значимость исследования заключается в выработке рекомендаций по выбору оптимального метода упрочнения.

Цель — обоснование эффективности различных схем усиления балок, которые подвергаются нагрузкам, направленным на их верхние пояса.

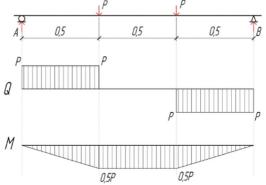
Методы. Одним из основных способов усиления конструкций является увеличение площади поперечного сечения отдельных элементов. Двутавровое сечение — один из наиболее целесообразных вариантов для использования в строительстве: в данном варианте распределение материала оптимально соответствует распределению нормальных напряжений, возникающих при изгибе балки. Двутавры обеспечивают высокую жесткость при относительно малом весе, что делает их идеальными для применения в различных строительных проектах [1].

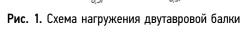
Были проведены испытания на установке, где тестировалась балка с пролетом 1,5 м. Балка подвергалась симметричной нагрузке, которая была приложена парой сил на расстоянии 0,5 м от опор (рис. 1).

Балка достигала трех напряженно-деформированных состояний в расчетном сечении при постепенном увеличении нагрузки.

Первый класс напряженно-деформированного состояния — упругая стадия: напряжения по всей площади сечения балки не достигают расчетного сопротивления. Балка рассчитывается на изгиб и на срез. Это состояние наиболее безопасно и позволяет конструкции функционировать без дополнительных деформаций и разрушений [2]. Нормальные напряжения определялись по формуле (1):

$$\sigma = \frac{M}{W_x} \le R_y. \tag{1}$$


Касательные напряжения:


$$\tau = \frac{QS_x}{I_x s} \le R_s.$$

Главным выступает обеспечение условий работы на изгиб по нормальным напряжениям.

Второй класс — упругопластическая стадия. Конструкция начинает испытывать значительные деформации, но еще не достигла критического состояния.

$$\sigma = \frac{M}{c_x \beta W_x} \le R_y \gamma_c$$

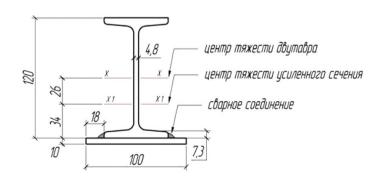


Рис. 2. Усиленный двутавр с приваренной полосой к нижней части балки

Рис. 3. Усиленный двумя полосами двутавр

Третий класс — пластическое состояние: балка уже не может воспринимать нагрузки без значительных деформаций.

Далее были проанализированы случаи усиления двутавровой балки:

- 1) усиление с помощью полосы, приваренной к нижней части балки (рис. 2);
- 2) усиление двумя полосами, симметрично расположенными с обеих сторон (размеры 50×10 и 100×10 мм) (рис. 3).

При расчетах были определены геометрические характеристики двутавра, усиленного полосой: поперечное сечение изменяется, следовательно, меняется геометрия сечения, так находя новое положение центра тяжести:

$$Y_{\text{II.T}} = \frac{\sum S_x}{\sum A} = \frac{10 \cdot 1 \cdot 6.5}{14.7 + 10 \cdot 1} = 26 \text{ MM}.$$

По результатам расчета получаем, что центр тяжести усиленных увеличением сечения образцов, относительно центра тяжести эталонного образца, смещен. Осевые моменты инерции и моменты сопротивления относительно осей определяем соответственно по формулам (2) и (3).

$$I_x = I_x^{\text{AB}} + A_{\text{AB}} \cdot 2.6^2 + 10 \cdot \frac{1^3}{10} + 10 \cdot 1 \cdot 3.7^2 = 587.27 \text{ cm}^4,$$
 (2)

$$W_x^{\text{pact}} = \frac{I_X}{3.7} = 158.7 \text{ cm}^3, W_x^{\text{cw}} = \frac{I_X}{8.6} = 68.3 \text{ cm}^3.$$
 (3)

Так как $W_x^{\text{сж}} < W_x^{\text{раст}}$, можно предположить неэффективность усиления.

Далее проводились аналогичные расчеты для усиления двумя полосами, симметрично расположенными с обеих сторон. Образец усиленного сечения (50×10):

$$I_x = I_x^{\text{AB}} + I_x^{\text{пол}} = I_x^{\text{AB}} + 2 \cdot \frac{t_{\text{пол}} \cdot b_{\text{пол}}^3}{12} = 370,8 \text{ cm}^4,$$

$$W_x = \frac{I_x \cdot 2}{h_{\text{RB}}} = 61,8 \text{ cm}^3,$$

Образец усиленного сечения (100×10):

$$I_x = I_x^{\text{AB}} + I_x^{\text{ПОЛ}} = I_x^{\text{AB}} + 2 \cdot \frac{t_{\text{ПОЛ}} \cdot b_{\text{ПОЛ}}^3}{12} = 516,7 \text{ cm}^4.$$

$$W_x = \frac{I_x \cdot 2}{h_{\text{AB}}} = 86,1 \text{ cm}^3 \gg 58,4 \text{ cm}^3.$$

Результаты. Рассчитаем ядровое расстояние для эталонного двутавра в направлении осей x и y:

$$\rho_y = \frac{W_x}{A} = 3.98 \text{ cm}, \ \rho_x = \frac{W_y}{A} = 0.59 \text{ cm}.$$

Для усиленного полосой двутавра:

$$\rho_y^{\text{cw}} = \frac{W_x^{\text{cw}}}{\sum A} = 2,77 \,\text{cm}, \quad \rho_y^{\text{pact}} = \frac{W_x^{\text{pact}}}{\sum A} = 6,43 \,\text{cm}.$$

Поскольку 2,7 ≤ 3,98 см; 6,43 ≤ 3,98 см, можно сделать вывод, что усиление неэффективно, так как слабая сжатая зона.

Ядровые расстояния для образца усиленного сечения 50×10 и 100x10 соответственно:

$$\rho_y = \frac{W_x}{\sum A} = 2.5 \text{ cM}, \qquad \rho_y = \frac{W_x}{\sum A} = 2.48 \text{ cM}.$$

Выводы. Исследование различных схем усиления двутавровых балок является актуальной задачей, которая требует внимательного подхода и тщательных расчетов. Симметричное усиление стенок двутавра с обеих сторон наиболее эффективный метод усиления, который позволяет улучшить эксплуатационные характеристики зданий и сооружений, что в свою очередь способствует повышению безопасности и долговечности конструкций [3].

Ключевые слова: двутавровая балка; поперечное сечение; напряженно-деформированное состояние; усиление; напряжения; момент инерции; ядровое расстояние.

Список литературы

- 1. Бальдин Г.М., Таничева Н.В. Усиление строительных конструкций при реконструкции и капитальном ремонте зданий. Москва: Изд-во АСВ, 2008. 112 с. ISBN: 978-5-93093-526-4
- 2. Валь В.П., Горохов Е.В., Уваров Б.Ю. Усиление стальных каркасов одноэтажных производственных зданий при их реконструкции. Москва: Стройиздат, 1987. 220 с.
- 3. ГОСТ 23118-2012. Конструкции стальные строительные. Общие технические условия.

Сведения об авторах:

Дарья Владимировна Мурзина — студентка, группа 23ФПГС-108, факультет промышленного и гражданского строительства; Самарский государственный технический университет, Самара, Россия. E-mail: dariamur111@qmail.com

Анастасия Витальевна Степина — студентка, группа 23ФПГС-108, факультет промышленного и гражданского строительства; Самарский государственный технический университет. Самара, Россия. E-mail: stepina nastasya05@mail.ru

Сведения о научном руководителе:

Мария Александровна Кальмова — кандидат технических наук, доцент кафедры «Строительная механика, инженерная геология, основания и фундаменты»; Самарский государственный технический университет, Самара, Россия. E-mail: kalmova@inbox.ru