Системный анализ технологических процессов теплообменного оборудования в условиях неопределенности

Л.В. Осянина

Самарский государственный технический университет, Самара, Россия

Обоснование. Для обеспечения надежной работы теплообменного оборудования важно отслеживать изменения температуры на его поверхности во времени и иметь информацию о коэффициенте теплопередачи. Данная характеристика может быть получена путем решения задачи идентификации на основе экспериментальных данных, полученных в результате пуска котла-утилизатора газотурбинной установки.

Цель — восстановить коэффициенты конвективного теплообмена на внутренней и внешней границах барабана на основе зашумленных данных.

Методы. При отсутствии случайных возмущений обратная задача теплопроводности сводится к задаче оптимизации минимаксного функционала качества, для решения которой используются альтернансные свойства температурных распределений [1].

Однако в условиях возмущений определить точки альтернанса бывает затруднительно. Обычные методы обработки данных позволяют понизить уровень шума, но могут привести к искажению особенностей динамики процесса. Поэтому в рассматриваемом случае может быть применен подход, предусматривающий параметрическую оптимизацию ансамбля траекторий с интервальными неопределенностями [2].

Данный метод предполагает, что температурная зависимость характеризуется неполнотой информации. В этом случае известны только границы $Q_{\min}(t)$ и $Q_{\max}(t)$ диапазона возможного изменения температуры. Поэтому вместо рассмотрения единственной зашумленной температурной кривой предлагается учитывать набор (ансамбль) Q^0 бесконечного числа k=1,2 возможных реализаций на множестве Ω допустимых вариантов (1) [3]:

$$Q_{\min}(t) \le Q_{\text{avert}}^{\Omega}(x_i^*, t) \le Q_{\max}(t), k = 1, 2, \dots$$
 (1)

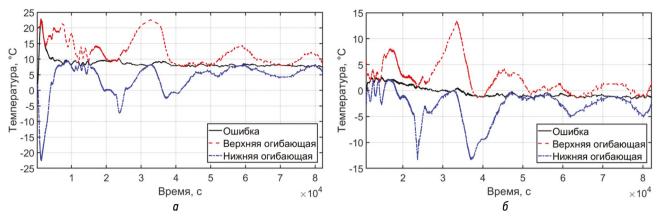
Задача в экстремальной постановке рассматривается как задача оптимального управления (2) [3]:

$$I(\alpha_{1},\alpha_{2}) = \max_{k=1,2,\dots} \left| \max_{t \in \left[0,t^{f}\right]} \left| Q_{\mathfrak{I}KC\Pi k}^{\Omega}(x_{i}^{*},t) - Q_{\mathsf{MOJ}}(x_{i}^{*},t,\alpha_{1},\alpha_{2}) \right| \rightarrow \min_{\alpha_{1},\alpha_{2}}.$$
 (2)

Искомые значения коэффициентов теплопередачи параметризуются вектором параметров $\Delta = \left(\Delta_1 = \alpha_1, \Delta_2 = \alpha_2\right)$. При этом выражение (2) формулируется следующим образом (3):

$$I(\Delta) = \max_{k=1,2,\dots} \left| \max_{t \in [0,t^f]} \left| Q_{\text{эксп}k}^{\Omega}(x_i^*,t) - Q_{\text{мод}}(x_i^*,t,\Delta) \right| \to \min_{\Delta}.$$
 (3)

Результаты. Определена математическая модель описанного процесса (4)–(7) [4]:


$$\frac{\partial Q(x,t)}{\partial t} = a \frac{\partial^2 Q(x,t)}{\partial x^2}, 0 < x < R, t > 0, \tag{4}$$

$$Q(x,0) = Q_0, \tag{5}$$

$$-\lambda \frac{\partial Q(0,t)}{\partial x} = \alpha_1 \left[Q_{cp}(t) - Q(0,t) \right], \tag{6}$$

$$\lambda \frac{\partial Q(R,t)}{\partial x} = \alpha_2 \left[Q_{\mathbf{x}}(t) - Q(R,t) \right], \tag{7}$$

где Q(x,t) — температура стенки барабана котлоагрегата, x — координата, t — время, R — толщина стенки, $a=\frac{\lambda}{\gamma}$. — коэффициент температуропроводности: λ,c,γ — коэффициент теплопроводности, удельная теплоемкость, плотность материала стенки, Q_0 — начальное значение температуры, α_1 и α_2 — коэф-

Рис. 1. Температурная невязка: a — расчет на полном интервале времени; δ — расчет на участке стабилизации температуры

фициенты конвективной теплоотдачи на внешней и внутренней границах, $Q_{\rm x}(t), Q_{\rm cp}(t)$ — температура рабочей и окружающей сред.

В результате решения задачи теплопроводности было получено выражение (8), определяющее температурное распределение стенки барабана по Лапласу [5]:

$$Q(x,p) = \int_{0}^{R} W(x,\xi,p) w(\xi,p) d\xi = a(W(x,R,p) \cdot b_{2}Q_{*}(p) - W(x,0,p) \cdot b_{1}Q_{cp}(p)).$$
(8)

Было проведено два расчета: на полном интервале времени $t \in [0,82173]$ с (участок быстрого нагрева и участок стабилизации температуры) и на интервале без участка быстрого нагрева $t \in [10876,82173]$ с.

В результате применения подхода, предусматривающего параметрическую оптимизацию ансамбля траекторий с интервальными неопределенностями, были определены значения коэффициентов теплопередачи на внешней и внутренней границах барабана (табл. 1).

Таблица 1. Результаты идентификации

Временной интервал	Коэффициент теплопередачи на внешней границе барабана α ₁ , Βτ/(м²К)	Коэффициент теплопередачи на внутренней границе барабана α ₂ , Вт/(м²К)	Погрешность измерения, ε, %
Полный интервал времени	29,3	350,5	11,2
Участок стабилизации температуры	19,17	596,8	6,5

На полном интервале времени наблюдается значительная погрешность аппроксимации на участке быстрого нагрева и отклонение температурной разности на участке стабилизации, обусловленное различиями динамики процесса: резким увеличением температуры в начале и постепенным замедлением.

Расчет на участке медленного изменения температуры позволил добиться лучшего качества моделирования: ошибка стала заметно ниже, а ее смещение к концу интервала стремится к нулю (рис. 1).

Выводы. На основе полученных результатов подтверждается, что предложенный метод позволяет обеспечить высокий уровень точности определения коэффициентов теплообмена при наличии внешних возмущающих факторов без применения процедур регуляризации, которые могли бы привести к искажению результатов. Выделение участков разной динамики позволяет повысить качество идентификации.

Ключевые слова: процесс теплопроводности; коэффициент конвективного теплообмена; идентификация; ансамбль траекторий; погрешности измерения.

Список литературы

1. Дилигенская А.Н. Решение линейной коэффициентной обратной задачи теплопроводности на основе альтернансного метода оптимизации // Вестник СамГТУ. Серия: Технические науки. 2013. № 3(39). С. 198–202.

- 2. Дилигенская А.Н. Параметрическая оптимизация в обратных задачах теплопроводности в условиях интервальной неопределенности возмущений // Труды XX Международной конференции / под ред. Е.А. Федосова, Н.А. Кузнецова, С.Ю. Боровика. Самара: Офорт, 2018. С. 112—118. EDN: XZFRGH
- 3. Дилигенская А.Н., Осянина Л.В. Идентификация процесса теплообмена котлового оборудования на основе возмущенных данных // Вестник Южно-Уральского государственного университета. Серия: Энергетика. 2024. Т. 24, № 4. С. 86–93. doi: 10.14529/power240410 EDN: CDESQD
- 4. Рапопорт Э.Я. Структурное моделирование объектов и систем управления с распределенными параметрами: учебное пособие. Москва: Высшая школа, 2003. 303 с. EDN: QMMNDD
- 5. Бутковский А.Г. Характеристики систем с распределенными параметрами: справочное пособие. Москва: Наука, 1979. 224 с.

Сведения об авторе:

Любовь Владимировна Осянина — студентка, группа 1-ИАИТ-101М, институт автоматики и информационных технологий; Самарский государственный технический университет, Самара, Россия. E-mail: osyanina_19@mail.ru

Сведения о научном руководителе:

Анна Николаевна Дилигенская — доктор технических наук, доцент, профессор; Самарский государственный технический университет, Самара, Россия. E-mail: adiligenskaya@mail.ru