Расчет бортовых микроускорений при пассивном полете КА, представленного системой жестко связанных материальных точек

С.А. Силифонкин

Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия

Обоснование. Исследование микроускорений на борту космического аппарата (КА) позволяет решать задачи:

- 1) фундаментального характера: исследование магнитного поля Земли путем сопоставления показателей магнитометров и данных о бортовых микроускорениях, исследование роста тканей биообразцов в различных участках КА:
- 2) прикладного характера: выращивание кристаллов благодаря контролю микроускорений и их гашению, затвердевание сплавов в слитки с неизменными по всему объему свойствами;
- 3) навигационного характера: исследование работы системы управления движением, а также управление ей на основе данных о микрогравитационной обстановке на борту.

Также изучение микроускорений может быть полезно в контексте исследования необходимых границ точности работы систем управления движением на космический аппарат дистанционного зондирования Земли.

Цель — подготовить основу для разработки универсальной вычислительной модели оценки бортовых микроускорений. Представленная модель может стать методологической основой для создания в дальнейшем программного комплекса, предназначенного для оценки микрогравитационной обстановки на борту КА с произвольной конструкцией.

Методы. Модель представляет космический аппарат как набор материальных точек, жестко связанных друг с другом. Эта система может быть описана на основе STL-модели КА.

В расчете используется две системы координат. Первая привязана к центру Земли. В нулевой момент времени (по Гринвичу) ее плоскость ХОХ проходит через плоскость Гринвичского меридиана, а ось ОУ дополняет систему до правой. Система не вращается вместе с Землей. Это — абсолютная система координат (СК). Другая СК привязана к центру масс космического аппарата и движется вместе с ним. Ее оси постоянно параллельны осям абсолютной СК. Такая постановка позволяет успешно и относительно просто применять векторные выражения для анализа состояния КА во время полета.

В рамках данной модели предполагается, что мы можем для любой точки с известными координатами и известной скоростью в ней описать вектор всех действующих на точку внешних сил. Назовем его $ec{D}$. Он имеет размерность в Ньютонах (сила).

$$\vec{D}\left(\overrightarrow{R_p}, \overrightarrow{V_p}\right) = \vec{A}\left(\overrightarrow{R_p}, \overrightarrow{V_p}\right) + \vec{G}\left(\overrightarrow{R_p}\right) + \vec{F},$$

где \vec{A} — вектор аэродинамических возмущений, воздействующих на точку;

 \vec{G} — вектор гравитационных возмущений, воздействующих на точку;

 $\overline{R_p}$ — радиус-вектор точки в абсолютной СК; $\overline{V_p}$ — вектор скорости точки в абсолютной СК; \overline{F} — иные возмущения, воздействующие на точку.

Родинамические возмущения, воздействующие на точку, могут быть оценены либо через учет полигональной модели, где аэродинамическое усилие от каждой плоскости-полигона будет распределяться по составляющим его точкам, либо через ассоциацию некой площади миделя с поверхностными точками. Последний подход проще, но менее точен.

Результаты. В результате работы реализованного алгоритма были получены оценки изменения бортовых микроускорений для различных точек, составленных по STL-модели (рис. 1).

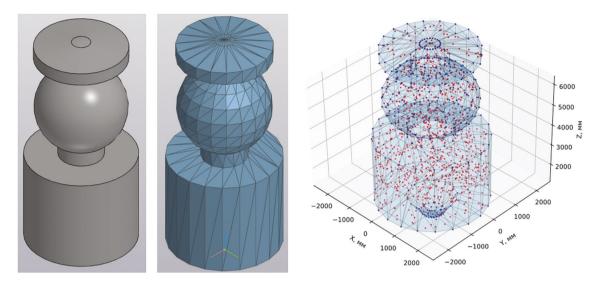


Рис. 1. Этапы преобразования модели слева направо: твердотельная модель, STL-модель, набор точек

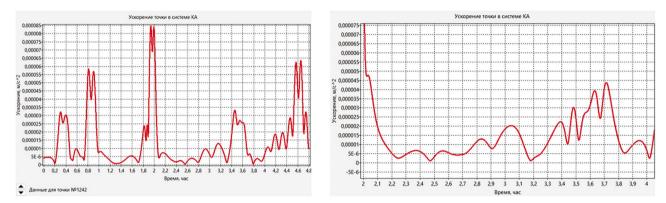


Рис. 2. Некоторые полученные графики бортовых микроускорений

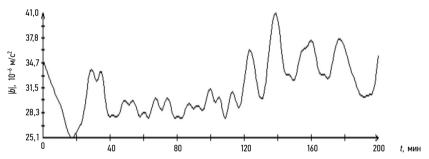


Рис. 3. Экспериментальные значения бортовых микроускорений для КА «Фотон»

Режим и амплитуда (рис. 2, *б*), полученные в данном расчете, схожи с экспериментальными данными [1] от КА «Фотон», продемонстрированными ниже (рис. 3).

Выводы. Заложена основа для формирования универсального алгоритма оценки микрогравитационной обстановки на борту различных КА. В качестве предварительной оценки точности расчета проведено моделирование обстановки на борту КА, проведено сравнение с экспериментальными данными.

Ключевые слова: микроускорения; космический аппарат (КА); микрогравитационная обстановка; вычислительная модель; материальная точка.

Список литературы

1. Абрашкин В.И., Зайцев А.С., Сазонов В.В. Результаты определения фактического вращательного движения и уровня остаточных микроускорений на КА «Фотон» по данным бортовых измерений // Вестник Самарского государственного аэрокосмического университета. 2010. № 2. С. 17–25. EDN: NWDMSL

Сведения об авторе:

Сергей Александрович Силифонкин — студент, группа 1507-240501D, институт авиационной и ракетно-космической техники; Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия. E-mail: 2002ss@mail.ru

Сведения о научном руководителе:

Юрий Яковлевич Пузин — кандидат технических наук, доцент; Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия. E-mail: puzin.yuya@ssau.ru