Protease activity of mealy-carbonated chernozems under different types of land use
- Authors: Chimitdorzhieva E.O.1
-
Affiliations:
- Institute of General and Experimental Biology SB RAS
- Issue: No 8 (2024)
- Pages: 88-94
- Section: Агроэкология
- URL: https://clinpractice.ru/0002-1881/article/view/647232
- DOI: https://doi.org/10.31857/S0002188124080126
- EDN: https://elibrary.ru/cdkzla
- ID: 647232
Cite item
Abstract
The protease activity of powdery carbonate chernozems (Haplic Chernozem Hypocalcic) was studied under various types of land use – arable land, virgin land, fallow. The research area is located in the Tugnui basin, Mukhorshibirsky district, Republic of Buryatia. The activity of the protease enzyme was determined by application using photographic film, which was laid in a layer of 0–20 cm of soil. Observations of protease activity in the first year of the study showed that the maximum activity occurred at the end of July–beginning of August. On arable land, the indicator was 35–39%, on fallow land – 34– 36%, on virgin land – 33–39%. In the 2nd year of the study, proteolytic activity increased from the beginning of the growing season. The first peak of activity was observed in the 2nd half of July, which amounted to 44% in arable land, 43% in fallow, and 47% in virgin lands. The second peak of protease activity occurred in the 2nd half of August and amounted to 30% in arable land, 35% in fallow and 37% in virgin lands. In chernozems, proteolytic activity was higher in virgin lands, its intensity decreased from arable land to fallow lands. This indicated an average proteolytic activity in powdery carbonate chernozems under various types of land use. Focality and mosaic character were noted during gelatin hydrolysis as a result of 10-day exposure in all variants. This indicated an uneven distribution of enzyme systems in the soil column and the presence of separate microzones with different protease activity. Statistical processing of the data showed that the activity of proteases depended on hydrothermal conditions.
Full Text

About the authors
E. O. Chimitdorzhieva
Institute of General and Experimental Biology SB RAS
Author for correspondence.
Email: erzhena_ch@mail.ru
Russian Federation, ul. Sakhyanovoy 6, Ulan-Ude 670047
References
- Хазиев Ф.Х. Системно-экологический анализ ферментативной активности почв. М.: Наука, 1982. 203 с.
- Савченко Л.А. Протеолитическая активность типичного чернозема в условиях Центрально-Черноземного заповедника // Мат-лы научн. конф. “Флора и растительность Центрального Черноземья – 2010”. Курск, 2010. С. 155–156.
- Milton D.K., Chawla R.K. Cotton dust contains proteolytic and elastolytic enzymes not inhibited by alpha-1-proteinase inhibitor // Am. J. Ind. Med. 1986. № 9. P. 247–260.
- Sánchez-Ramos I., Hernández C.A., Castanera P., Ortego F. Proteolytic activities in body and faecal extracts of the storage mite, Acarus farris // Med. Vet. Entomol. 2004. № 18. P. 378–386.
- Jedynak L., Kowalska J., Harasimowicz J., Golimowski J. Speciation analysis of arsenic in terrestrial plants from arsenic contaminated area // Sci. Total Environ. 2009. № 407. P. 945–952.
- Kania K., Byrnes E.A., Beilby J.P., Webb S.A.R., Strong K.J. Urinary proteases degrade albumin: implications for measurement of albuminuria in stored samples // Ann. Clin. Biochem. 2010. № 47. P. 151–157.
- Singh S.K., Singh S.K., Tripathi V.R., Khare S.K., Garg S.K. A novel psychrotrophic, solvent tolerant Pseudomonas putida SKG-1 and solvent stability of its psychro-thermoalkalistable protease // Proc. Biochem. 2011. № 46. P. 1430–1435.
- Heyndrickx M. The importance of endospore-forming bacteria originating from soil for contamination of industrial food processing // Appl. Environ. Soil Sci. 2011. ID561975.
- Cruz Ramírez M.G., Rivera-Rios J.M., Téllez-Jurado A., Gálvez A.P.M., Mercado-Flores Y., Arana-Cuenca A.A. Screening for thermotolerant ligninolytic fungi with laccase, lipase, and protease activity isolated in Mexico // J. Environ. Manag. 2012. № 95. P. 256–259.
- Hotson A., Mudgett M.G. Cysteine proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity // Curr. Opin. Plant Biol. 2004. № 7. P. 384–390.
- Chandu D., Nandi D. Comparative genomics and functional roles of the ATP-dependent proteases Lon and Clp during cytosolic protein degradation // Res. Microbiol. 2004. № 155. P. 710–719.
- Langklotz S., Baumann U., Narberhaus F. Structure and function of the bacterial AAA protease FtsH // Biochim. Biophys. Acta. 2012. № 1823. P. 40–48.
- Rahman R.N.Z.R.A., Basri M., Salleh A.B. Thermostable alkaline protease from Bacillus stearothermophilus F1; nutritional factors affecting protease production // Ann. Microbiol. 2003. № 53. P. 199–210.
- Kim K.I., Park S.C., Kang S.H., Cheong G.W., Chung C.H. Selective degradation of unfolded proteins by the self-compartmentalizing HtrA protease, a periplasmic heat shock protein in Escherichia coli // J. Mol. Biol. 1999. № 294. P. 1363–1374.
- Shankar S., Rao M., Laxman S. Purification and characterization of an alkaline protease by a new strain of Beauveria sp. // Proc. Biochem. 2011. № 46. P. 579–585.
- Burns R.G. Enzyme activity in soil: location and a possible role in microbial ecology // Soil Biol. Biochem. 1982. № 14. P. 423–427.
- Собина А.С., Хачиков Э.А., Шмараева А.Н., Федоренко А.Н., Приходько В.Д., Казеев К.Ш. Биологическая активность чернозема обыкновенного через 5 лет после прекращения агрогенной обработки // Агрохим. вестн. 2022. № 1. С. 22–26.
- Wang Q., Wang S. Response of labile soil organic matter to changes in forest vegetation in subtropical regions // Appl. Soil Ecol. 2011. № 47. P. 210–216. https://doi.org/10.1016/j.apsoil.2010.12.004
- Burns R.G., DeForest J.L., Marxsen J., Sinsabaugh R., Stromberger M.E., Wallenstein M.D., Weintraub M.N., Zoppini A. Soil enzymes in a changing environment: Current knowledge and future directions // Soil Biol. Biochem. 2013. № 58. P. 216–234. https://doi.org/10.1016/j.soilbio.2012.11.009
- Yongxing C., Bing H., Fang L., Jiang M., Shen G., Yu J., Wang X., Zhu H., Wu Y., Zhang X. Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems // Plant and Soil. 2019. № 458. P. 7–20. https://doi.org/10.1007/s11104-019-04159-x
- Rosinger C., Rousk J., Sandén H. Can enzymatic stoichiometry be used to determine growth–limiting nutrients for microorganisms? – A critical assessment in two subtropical soils // Soil Biol. Biochem. 2019. № 128. P. 115–126.doi: 10.1016/j.soilbio.2018.10.011
- Guan H.L., Fan J.W., Lu X. Soil specific enzyme stoichiometry reflects nitrogen limitation of microorganisms under different types of vegetation restoration in the karst areas // Appl. Soil Ecol. 2022. № 169. P. 104253. doi: 10.1016/j.apsoil.2021.104253
- Medeiros E., Alcantara N.K., Barros J.A., Silva W., Silva A.О., Moreira K.A. Absolute and specific enzymatic activities of sandy entisol from tropical dry forest, monoculture and intercropping areas // Soil Till. Res. 2015. № 145. P. 208–215.doi: 10.1016/j.still.2014.09.013
- Kivlin S.N., Treseder K.K. Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition // Biogeochemistry. 2014. № 117. P. 23–37. https://doi.org/10.1007/s10533-013-9852-2
- Beheshti A., Raiesi F., Golchin A. Soil properties, C fractions and their dynamics in land use conversion from native forests to croplands in northern Iran // Agricult. Ecosyst. Environ. 2012. № 148. P. 121–133. doi: 10.1016/j.agee.2011.12.001
- Raiesi F., Beheshti A. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran // Appl. Soil Ecol. 2014. № 75. P. 63–70. doi: 10.1016/j.apsoil.2013.10.012
- Чернышева Е.В., Дущанова К.С., Хомутова Т.Э., Борисов А.В. Микробная биомасса и ферментативная активность целинных и пахотных почв как показатели физиологического состояния микробных сообществ // Усп. совр. биол. 2023. T. 143. № 4. C. 403–416.doi: 10.31857/S0042132423040051
- Marinari S., Antisari L.V. Effect of lithological substrate on microbial biomass and enzyme activity in brown soil profiles in the northern Apennines (Italy) // Pedobiologia. 2010. № 53(5). Р. 313–320. doi: 10.1016/j.pedobi.2010.02.004
- Wickings K., Grandy S., Kravchenko A. Going with the flow: Landscape position drives differences in microbial biomass and activity in conventional, low input, and organic agricultural systems in the Midwestern US // Agricult. Ecosyst. Environ. 2016. № 218. Р. 1–10. doi: 10.1016/j.agee.2015.11.005
- Wang M., Ji L., Shen F., Meng J., Wang J., Shan C., Yang L. Differential responses of soil extracellular enzyme activity and stoichiometric ratios under different slope aspects and slope positions in Larix olgensis plantations // Forests. 2022. № 13. Р. 845. https://doi.org/10.3390/f13060845
- Макеев О.В., Ногина Н.А., Вторушин В.А. Своеобразие процессов почвообразования в мерзлотной тайге // Происхождение и свойства почв Забайкалья: докл. Бурят. почвоведов к IX Международ. конгр. почвоведов. Улан-Удэ, 1968. С. 102–107.
- Почвенно-географическое районирование СССР (в связи с сельскохозяйственным использованием земель) М.: Изд-во АН СССР, 1962. 422 с.
- Ногина Н.А. Почвы Забайкалья. М.: Наука, 1964. 312 с.
- Классификация и диагностика почв СССР. М.: Колос, 1977. 224 с.
- Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
- IUSS Working Group WRB. International Union of Soil Sciences (IUSS), Vienna, Austria. 2022. Available online: https://wrb.isric.org/files/WRB_fourth_edition_2022-12-18.pdf (accessed 05 December 2023).
- Аринушкина Е.В. Руководство по химическому анализу почв. М.: Изд-во МГУ, 1975. 488 с.
