Кинетика роста оксидной пленки и формирования core/shell–структур в наночастицах меди, полученных методом индукционной потоковой левитации

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Для синтеза наночастиц меди использован метод индукционной потоковой левитации. Изучена кинетика роста оксидной пленки на медных наночастица, что важно для понимания механизмов их пассивации и стабилизации. Исследовано влияние соотношения хладагента и окислителя на скорость роста оксидной пленки, что позволяет контролировать морфологию и состав наночастиц. Также проведено исследование старения медных наночастиц в течение 6 месяцев для оценки их устойчивости к окислению и агрегации.

Об авторах

А. Н. Марков

Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского

Email: markov.art.nik@gmail.com
пр. Гагарина, 23, корп. 2, Нижний Новгород, 603950 Россия

А. А. Капинос

Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского

пр. Гагарина, 23, корп. 2, Нижний Новгород, 603950 Россия

Е. С. Докин

Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского

пр. Гагарина, 23, корп. 2, Нижний Новгород, 603950 Россия

П. П. Грачев

Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского

пр. Гагарина, 23, корп. 2, Нижний Новгород, 603950 Россия

А. В. Емельянов

Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского

пр. Гагарина, 23, корп. 2, Нижний Новгород, 603950 Россия

В. А. Медов

Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского

пр. Гагарина, 23, корп. 2, Нижний Новгород, 603950 Россия

А. Н. Петухов

Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского

пр. Гагарина, 23, корп. 2, Нижний Новгород, 603950 Россия

А. А. Головачева

Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского

пр. Гагарина, 23, корп. 2, Нижний Новгород, 603950 Россия

А. В. Воротынцев

Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского

пр. Гагарина, 23, корп. 2, Нижний Новгород, 603950 Россия

Список литературы

  1. Narayanan R., El-Sayed M.A. Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution // Nano Lett. 2004. V. 4. № 7. P. 1343–1348. https://doi.org/10.1021/nl0495256
  2. Moura D., Souza M.T., Liverani L., Rella G., Luz G.M., Mano J.F., Boccaccini A.R. Development of a Bioactive Glass-Polymer Composite for Wound Healing Applications // Mater. Sci. Eng., C. 2017. V. 76. P. 224–232. https://doi.org/10.1016/J.MSEC.2017.03.037
  3. Banerjee K., Das S., Choudhury P., Ghosh S., Baral R., Choudhuri S.K. A Novel Approach of Synthesizing and Evaluating the Anticancer Potential of Silver Oxide Nanoparticles in vitro // Chemotherapy. 2017. V. 62. P. 279–289. https://doi.org/10.1159/000453446
  4. Gomez-Romero P. Hybrid Organic-Inorganic Materials – in Search of Synergic Activity // Adv. Mater. 2001. V. 13. № 3. P. 163–174. https://doi.org/10.1002/1521-4095(200102)13:3 <163::AID-ADMA163>3.0.CO;2-U
  5. Shaikh S.F., Mane R.S., Min B.K., Hwang Y.J., Joo O.S. D-Sorbitol-Induced Phase Control of TiO2 Nanoparticles and Its Application for Dye-Sensitized Solar Cells // Sci. Rep. 2016. V. 6. P. 1–10. https://doi.org/10.1038/srep20103
  6. Gracias D.H., Tien J., Breen T.L., Hsu C., Whitesides G.M. Forming Electrical Networks in Three Dimensions by Self-Assembly // Science. 2000. V. 289. P. 1170–1172. https://doi.org/10.1126/science.289.5482.1170
  7. Pacioni N.L., Borsarelli C.D., Rey V., Veglia A.V. Synthetic Routes for the Preparation of Silver Nanoparticles // Eng. Mater. 2015. P. 13–46. https://doi.org/10.1007/978-3-319-11262-6_2
  8. Ahmed S., Ahmad M., Swami B.L., Ikram S. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: a Green Expertise // J. Adv. Res. 2016. V. 7. P. 17–28. https://doi.org/ 10.1016/j.jare.2015.02.007
  9. Ozyurt D., Al Kobaisi M., Hocking R.K., Fox B. Properties, Synthesis, and Applications of Carbon Dots: a Review // Carbon Trends. 2023. V. 12. P. 1–27. https://doi.org/10.1016/j.cartre.2023.100276
  10. Swathy B. A Review on Metallic Silver Nanoparticles // IOSR J. Pharm. 2014. V. 4. P. 38–44. https://doi.org/10.9790/3013-0407038044
  11. Priyadarshana G., Kottegoda N., Senaratne A., De Alwis A., Karunaratne V. Synthesis of Magnetite Nanoparticles by Top-Down Approach from a High Purity Ore // J. Nanomater. 2015. P. 1–8. https://doi.org/10.1155/2015/317312
  12. Griffiths W.D., Caden A.J., Chen Q. Effects of Transition Metal Additions on Double-Oxide Film Defects in an Al–Si–Mg Alloy // Mater. Sci. Technol. 2017. V. 33. P. 2212–2222. https://doi.org/10.1080/02670836.2017.1346911
  13. Takrori F.M., Ayyad A. Surface Energy of Metal Alloy Nanoparticles // Appl. Surf. Sci. 2017. V. 401. P. 65–68. https://doi.org/10.1016/J.APSUSC.2016.12.208
  14. Nath S., Jana S., Pradhan M., Pal T. Ligand-Stabilized Metal Nanoparticles in Organic Solvent // J. Colloid Interface Sci. 2010. V. 341. P. 333–352. https://doi.org/10.1016/j.jcis.2009.09.049
  15. Liu X., Ortega-Guerrero A., Domingues N.P., Pougin M.J., Smit B., Hosta-Rigau L., Oostenbrink C. Stability Assessment in Aqueous and Organic Solvents of Metal–Organic Framework PCN333 Nanoparticles Through a Combination of Physicochemical Characterization and Computational Simulations // Langmuir. 2024. V. 40. № 42. P. 21976–21984. https://doi.org/10.1021/ACS.LANGMUIR.4C01684
  16. Denicourt-Nowicki A., Mordvinova N., Roucoux A. Metal Nanoparticles in Water: a Relevant Toolbox for Green Catalysis // Nanopart. Cat.: Adv. Synth. Appl. 2021. P. 43–71. https://doi.org/10.1002/9783527821761.CH3
  17. Mayer A.B.R. Colloidal Metal Nanoparticles Dispersed in Amphiphilic Polymers // Polym. Adv. Technol. 2001. V. 12. P. 96–106. https://doi.org/10.1002/1099–1581(200101/02)12:1/ 2<96::aid-pat943>3.0.co;2-g
  18. Sidorov S.N., Bronstein L.M., Valetsky P.M., Hartmann J., Cölfen H., Schnablegger H., Antonietti M. Stabilization of Metal Nanoparticles in Aqueous Medium by Polyethyleneoxide–Polyethyleneimine Block Copolymers // J. Colloid Interface Sci. 1999. V. 212. № 2. P. 197–211. https://doi.org/10.1006/JCIS.1998.6035
  19. Gromov A., Il’in A., Teipel U., Pautova J. Passivation of Metal Nanopowders // Blackwell: Wiley, 2014. V. 6. P. 133–152. https://doi.org/10.1002/9783527680696
  20. Sharaf E.M., Hassan A., AL-Salmi F.A., Albalwe F.M., Albalawi H.M.R., Darwish D.B., Fayad E. Synergistic Antibacterial Activity of Compact Silver/Magnetite Core-Shell Nanoparticles Core Shell Against Gram-Negative Foodborne Pathogens // Front. Microbiol. 2022. V. 13. https://doi.org/10.3389/fmicb.2022.929491
  21. Matlou G.G., Abrahamse H. Metallic Core-Shell Nanoparticles as Drug Delivery Vehicles in Targeted Photodynamic Therapy of Cancer // Handbook of Oxidative Stress in Cancer. Singapore: Springer, 2022. V. 1. P. 1245–1260. https://doi.org/10.1007/978-981-16-5422-0_208
  22. Verma J., Geng Y., Wang J., Goel S. Fabrication and Testing of a Multifunctional SiO2@ZnO Core-Shell Nanospheres Incorporated Polymer Coating for Sustainable Marine Transport // Sci. Rep. 2023 V. 13. Р. 12321. https://doi.org/10.1038/s41598-023-39423-9
  23. Kang B.K., Choi Y.J., Choi H.W., Bin Kwon S., Kim S., Kim Y.J., Park J.S., Yang W.S., Yoon D.H., Ryu W.H. Rational Design and In-Situ Formation of Nickel–Cobalt nitride Multi-Core/Hollow N-Doped Carbon Shell Anode for Li-ion Batteries // Chem. Eng. J. 2021. V. 420. № 1. P. 129630. https://doi.org/10.1016/j.cej.2021.129630
  24. Singh C., Mehata A.K., Priya V., Malik A.K., Setia A., Suseela M.N.L., Vikas M.N.L, Gokul P., Samridhi P., Singh S.K., Muthu M.S. Bimetallic Au–Ag Nanoparticles: Advanced Nanotechnology for Tackling Antimicrobial Resistance // Molecules. 2022. V. 27. № 20. P. 7059. https://doi.org/10.3390/molecules27207059
  25. Isa S.Z.M., Zainon R., Tamal M. State of the Art in Gold Nanoparticle Synthesisation Via Pulsed Laser Ablation in Liquid and Its Characterisation for Molecular Imaging: a Review // Materials. 2022. V. 15. № 24. P. 875. https://doi.org/10.3390/ma15030875
  26. Kapinos A.A., Markov A.N., Petukhov A.N., Otvagina K.V., Kazarina O.V., Vorotyntsev A.V. Direct Synthesis of Copper and Copper Oxide Nanoparticles from Bulk Materials by the Induction Flow Levitation Technique // Inorg. Mater. 2022. V. 58. P. 931–938. https://doi.org/10.1134/S0020168522090060
  27. Markov A.N., Vorotyntsev A.V., Kapinos A.A., Petukhov A.N., Pryakhina V.I., Kazarina O.V., Atlaskin A.A., Otvagina K.V., Vorotyntsev V.M., Vorotyntsev I.V. Direct Synthesis of Al, Mg, Ni, and Ti Nanoparticles by Induction Flow Levitation Technique // ACS Sustainable Chem. Eng. 2022. V. 10. № 24. P. 7929–7941. https://doi.org/10.1021/ACSSUSCHEMENG.2C00940

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025