Синтез, выращивание монокристаллов и электрофизические свойства соединений CuMBi3S6 и CuMEr3S6 (M–Pb, Ca, Eu, Yb)
- Авторлар: Aliyev O.M.1, Ajdarova D.S.1, Ragimova V.M.1, Maksudova T.F.1
-
Мекемелер:
- Institute of Catalysis and Inorganic Chemistry named after Academician M. Nagiev of the Ministry of Science and Education of the Republic of Azerbaijan
- Шығарылым: Том 61, № 7-8 (2025)
- Беттер: 387-393
- Бөлім: Articles
- URL: https://clinpractice.ru/0002-337X/article/view/692244
- DOI: https://doi.org/10.7868/S3034558825040012
- ID: 692244
Дәйексөз келтіру
Аннотация
Методами термического, рентгенофазового, микроструктурного анализов, измерением микротвердости и электрофизических свойств установлено образование соединений состава CuMBi3S6 и CuMEr3S6 (M – Eu, Pb, Yb, Ca). Показано, что полученные соединения изоструктурны, кристаллизуются в орторомбичесской сингонии (a = 11.201–11.236, b = 11.561–11.420, с = 4.003–3.966 Å, Z = 4, пр.гр. Pb21m, d = 4.17–3.570 г/см3) и относятся к структурному типу крупкаита CuPbBi3S6. Соединения типа CuMBi3S6 и CuMEr3S6 являются полупроводниками р-типа проводимости, вычислена их ширина запрещенной зоны.
Негізгі сөздер
Авторлар туралы
O. Aliyev
Institute of Catalysis and Inorganic Chemistry named after Academician M. Nagiev of the Ministry of Science and Education of the Republic of Azerbaijan
Email: iradam@rambler.ru
G. Javid Avenue, 113, Baku, Az 1143 Azerbaijan
D. Ajdarova
Institute of Catalysis and Inorganic Chemistry named after Academician M. Nagiev of the Ministry of Science and Education of the Republic of AzerbaijanG. Javid Avenue, 113, Baku, Az 1143 Azerbaijan
V. Ragimova
Institute of Catalysis and Inorganic Chemistry named after Academician M. Nagiev of the Ministry of Science and Education of the Republic of AzerbaijanG. Javid Avenue, 113, Baku, Az 1143 Azerbaijan
T. Maksudova
Institute of Catalysis and Inorganic Chemistry named after Academician M. Nagiev of the Ministry of Science and Education of the Republic of AzerbaijanG. Javid Avenue, 113, Baku, Az 1143 Azerbaijan
Әдебиет тізімі
- Сhalcogenides: Advances in Research and Applications / Ed. Woodrow P. Nova Science, 2018. 103 p. https://doi.org/10.1039/B514640B
- Chands S., Sharma P. Synthesis and Сharacterization of Ag–Chalcogenide Nanoparticles for Possible Applications in Photovoltaies // Mater. Sci. Poland. 2018. V. 36. № 3. P. 375–380. https://doi.org/10.2478/msp-2018-0064
- Sanghoon X.L. Chalcogenides: From 3D to 2D and Beyond. Elsevier, 2019. 398 p. https://doi.org/10.1016/C2017-0-03585-1
- Каменский В.В., Шаренкова Н.В. Особенности свойств редкоземельных полупроводников // Физика и техника полупроводников. 2019. Т. 53. № 2. С. 158–160. https://doi.org/10.1134/S106378261902012X
- Ahluwalia G.K. Applications of Chalcogenides: S, Se and Te. Springer, 2016. 461 p. https://doi.org/10.1007/978-3-319-41190-3
- Min Jin, Siqi Lin, Wen Li, Zhiwei Chen, Rongbin Li et al. Fabrication and Thermoelectric Properties of Single – Crystal Argyrodite Ag8SnSe6 // Chem. Mater. 2019. V. 31(7). P. 2603–2610. https://doi.org/10.1021/acs.chemmater.9b00393
- Barbara K.H., Kai W., Yasar K., Trsitan D. High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag8SnSe6 // Mater. Sci. Eng. 2017. P. 4833–4839. https://doi.org/10.1021/acs.chemmater.7b00767
- Lini L., Qing Jiao, Changgui Lin et al. Structural Characterization and Compositional Dependence of the Optical Properties of Ge–La–Ga–S Chalcogenide Glass System // Opt. Mater. 2018. V. 78. P. 295–301. https://doi.org/10.1016/j.optmat.2018.02.041
- El Naggar A.M., Albassam A.A., Lakshminatayana G., Halyan V.V. et al. Exploration of Nonlinear Optical Features of Ga2S3–La2S3 Glasses for Optoelectronic Applications // Glass Phys. Chem. 2017. V. 45. P. 467–471. https://doi.org/10.1134/S1087659619060142
- Zhang W., Liaw P.K., Zhang Y. Science and Technology in High-Entropy Alloys // Sci. China Mater. 2018. V. 61(1). P. 2–22. https://doi.org/10.1007/s40843-017-9195-8
- Yang A., Sun M., Ren H., Lin H. Dy3+-doped Ga2S3–La2S3 Chalcogenide Glass for Mid-Infrared Fiber Laser Medium // J. Lumin. 2021. V. 237. P. 118169. https://doi.org/10.1016/j.jlumin.2021.118169
- Easo P.G., Dierk R., Robert O.R. High-Entropy Alloys // Nat. Rev. Mater. 2019. V. 4(2). P. 515–534. https://doi.org/10.1038/s41578-019-0121-4
- Jiang B., Yu Y., Cui J. et al. High-Entropy Stabilized with High Thermoelectric Performance // Science. 2021. V. 371(6531). P. 830–834. https://doi.org/10.1126/science.abe1292
- Oreshonkov A.S., Ararpin N.O., Shestakov N.P., Adichtchev S.V. Experimental and DFT Study of BaLaCuS3 Direct band gap semiconductor // Phys. Chem. Solids. 2021. V. 148. P. 109670. https://doi.org/1016/jpcs.2020.109670
- Andreev O.V., Atuchin V.V., Aleksandrovsky A.S., Denisenko Y.G., Zakharov B.A., Tyutunnik A.P., Habibullayev N.N., Velikanov D.A., Ulybin D.A., Shpindyuk D.D. Synthesis Structure and Properties of EuLnCuSe3 (Ln = Nd, Sm, Gd, Er) // Crystals. 2022. V. 12. P. 17. https://doi.org/10.3390/cryst12010017
- Shahid O., Yadav S., Maity D., Deepa M., Niranjan M.K., Prakash J. Synthesis Crystal Structure DFT and Photovoltaic Studies of BaCeCuS3 // New J. Chem. 2023. V. 47. P. 5378–5389. https://doi.org/10.1039/D2NJ06301H
- Aliyev O.M., Ajdarova D.S., Maksudova T.F., Ragimova V.M., Bayramova S.T. Synthesis Growth of Monocrystals and Properties of the Compounds of PbLnCuS3 (Ln – La, Nd, Sm, Gd, Dy, Er) Type // Az. Chem. J. 2023. № 1. P. 183–190. https://doi.org/10.32737/0005-2531-2023-1-183-190
- Ruseikina A.V., Solovyov L.A., Grigoriev M.V., Andreev O.V. Crystal Structure Variations in the Series SrLnCuS3 (Ln = La, Pr, Sm, Gd, Er and Lu) // Acta Crystallogr. 2019. V. 75. P. 584–588. https://doi.org/10.1107/S2053229619004984
- Ruseikina A.V., Solovyov L.A., Galenko E.A., Grigoriev M.V. Kofined Crystal Structure of SrLnCuS3 (Ln = Er, Yb) // Rus. J. Inorg. Chem. 2018. V. 63. P. 1225–1231. https://doi.org/10.1134S0036023618090140
- Ruseikina A.V., Maxim V., Grigoriev M.V., Clocke R.J. et al. Synthesis Crystal Structure and Optical and Magnetic Properties of the New Quaternary Erbium Telluride EuErCuTe3. Experiment and Calculation // Materials. 2024. V. 17(10). P. 2284. https://doi.org/10.33901ma17102284
- Aliyev O.M., Ajdarova D.S., Ragimova V.M. et al. Phase Formation in the FeSb2S4–FeLn2S4 System, Synthesis and Properties of Compounds of the FeLnSbS4 (Ln = Nd, Er) Type // Chem. Problems. 2024. № 3(22). P. 361–368. https://doi.org/10.32737/2221-8688-2024-3-361-368
- Gulay L.D., Shemet V. Ya., Olekseyuk I.D. Investigation of the R2S3–Cu2S–PbS (R = Y, Dy, Ho and Er) System // J. Alloys Compd. 2007. V. 43(1–2). P. 77–84. https://doi.org/10.1016/j.jallcom.2006.05.029
- Aliev O.M., Bayramova S.T., Ajdarova D.S. et al. Synthesis and Properties of Synthetic Aykinite PbCuBiS3 Analogies // J. Condens. Matter. 2020. № 22(2). P. 182–189. https://doi.org/10.17308/kcmf.2020.22/2821
- Strobel S., Schleid T. Three Structures for Strontium Copper [I] Lanthanides [III] Selenides SrCuMSe3 (M – La, Gd, Lu) // J. Alloys Compd. 2006. V. 418. № 1–2. P. 80–85. https://doi.org/10.1016/j.jallcom.2005.09.090
- Agaeva R.M., Mammadov Sh.H., Azhdarova D.S., Ragimova V.M., Aliev O.M. Synthesis and Study of the Properties of Synthetic Analogues of the Mineral Naffildite with the Participation of Rare Earth Elements // J. Condens. Matter. 2022. V. 24(1). P. 3–10. https://doi.org/10.17308/kcmf.2022.24/9049
Қосымша файлдар
