Gynodioecy in knautia arvensis (caprifoliaceae)
- Authors: Botov G.K.1, Godin V.N.2
-
Affiliations:
- Moscow Pedagogical State University
- Central Siberian Botanical Garden SB RAS
- Issue: Vol 110, No 1 (2025)
- Pages: 71-90
- Section: COMMUNICATIONS
- URL: https://clinpractice.ru/0006-8136/article/view/682762
- DOI: https://doi.org/10.31857/S0006813625010049
- EDN: https://elibrary.ru/EMIWDX
- ID: 682762
Cite item
Abstract
The gynodioecy of the herbaceous polycarpic Knautia arvensis was studied in the Moscow Region. Eight populations were examined from 2020 to 2024. The plants form two types of flowers, bisexual and pistillate, on three types of individuals: hermaphrodite (only bisexual flowers), female (only pistillate flowers), and gynomonoecious (bisexual and pistillate flowers). The bisexual flowers are complete, tetracyclic, with tetramerous perianth and androecium, and dimerous gynoecium. The marginal flowers of the floral units are irregular (transversely zygomorphic), the median ones are nearly regular (actinomorphic). In the pistillate flowers, rudiments of the androecium are preserved, represented by staminodes that do not produce pollen. Three criteria were revealed to distinguish the flowers of different sexual types: size differences (bisexual flowers are larger than pistillate ones); the ratio of the length of corolla tube to stamen filaments, and the degree of the androecium preservation after the flower fading. In the sex ratio of the eight populations, the hermaphrodite plants prevailed, from 61.5 to 68.8%. The gynomonoecious variant was the rarest, from 2.0 to 6.3%. No changes in the sex ratio in the populations were found over the five years of observation. The size dimorphism of bisexual and pistillate flowers and the presence of gynomonoecious individuals in gynodioecious species are discussed.
Keywords
Full Text

About the authors
G. K. Botov
Moscow Pedagogical State University
Author for correspondence.
Email: grishenka.botov@mail.ru
Russian Federation, Moscow
V. N. Godin
Central Siberian Botanical Garden SB RAS
Email: vn.godin@mpgu.su
Russian Federation, Novosibirsk
References
- Ashman T.-L., Stanton M.L. 1991. Seasonal variation in pollination dynamics of sexually dimorphic Sidalcea oregana ssp. spicata (Malvaceae). — Ecology. 72(3): 993–1003. https://doi.org/10.2307/1940599
- Bailey M.F., Delph L.F. 2007. Sex-ratio evolution in nuclear-cytoplasmic gynodioecy when restoration is a threshold trait. — Genetics. 176(4): 2465–2476. https://doi.org/10.1534/genetics.107.076554
- Baker H.G. 1948. Corolla-size in gynodioecious and gynomonoecious species of flowering plants. — Proc. Leeds Philos. Literary Soc. 5(1): 136–139.
- Barrett S.C.H., Hough J. 2013. Sexual dimorphism in flowering plants. — J. Exp. Bot. 64(1): 67–82. https://doi.org/10.1093/jxb/ers308
- Benevides C.R., Haddad I.V.N., Barreira N.P., de Rodarte A.A.T., Galetto L., de Santiago-Fernandes L.D.R., de Lima H.A. 2013. Maytenus obtusifolia Mart. (Celastraceae): a tropical woody species in a transitional evolutionary stage of the gynodioecy-dioecy pathway. — Plant Syst. Evol. 299(9): 1693–1707. https://doi.org/10.1007/s00606-013-0826-6
- Bobrov E.G. 1978. Fam. 130. Dipsacaceae Lindl. — In: Flora of the European part of the USSR. Vol. 3. Leningrad. P. 37–46 (In Russ.).
- Casimiro-Soriguer I., Buide M.L., Narbona E. 2013. The roles of female and hermaphroditic flowers in the gynodioecious — gynomonoecious Silene littorea: insights into the phenology of sex expression. — Plant Biol. J. 15(6): 941–947. https://doi.org/10.1111/j.1438-8677.2012.00697.x
- Cervantes C., Alvarez A., Cuevas E. 2018. Small but attractive: female-biased nectar production and floral visitors in a dimorphic shrub. — Plant Biol. 20(1): 160–164. https://doi.org/10.1111/plb.12653
- Charlesworth D., Laporte V. 1998. The male-sterility polymorphism of Silene vulgaris: analysis of genetic data from two populations and comparison with Thymus vulgaris. — Genetics. 150(3): 1267–1282. https://doi.org/10.1093/genetics/150.3.1267
- Connor H.E. 1965. Breeding systems in New Zealand grasses. VI. Control of Gynodioecism in Cortaderia richardii (Endl.) Zotov. — N. Z.J. Bot. 3(4): 233–242. https://doi.org/10.1080/0028825X.1965.10429017
- Darwin C. 1877. The different forms of flowers on plants of the same species. London. 352 p.
- Delph L.F., Galloway L.F., Stanton M.L. 1996. Sexual dimorphism in flower size. — Amer. Nat. 148(2): 299–320. https://doi.org/10.1086/285926
- Demyanova E.I. 1985. Distribution of gynodioecy in flowering plants. — Bot. Zhurn. 70(10): 1289–1301 (In Russ.).
- Dommée B., Assouad M.W., Valdeyron G. 1978. Natural selection and gynodioecy in Thymus vulgaris L. — Bot. J. Linn. Soc. 77(1): 17–28. https://doi.org/10.1111/j.1095-8339.1978.tb01369.x
- Dudle D.A., Mutikainen P., Delph L.F. 2001. Genetics of sex determination in the gynodioecious species Lobelia siphilitica: evidence from two populations. — Heredity. 86(3): 265–276. https://doi.org/10.1046/j.1365-2540.2001.00833.x
- Dufay M., Billard E. 2012. How much better are females? The occurrence of female advantage, its proximal causes and its variation within and among gynodioecious species. — Ann. Bot. 109(3): 505–519. https://doi.org/10.1093/aob/mcr062
- Etten Van M.L., Chang S.M. 2014. Frequency-dependent pollinator discrimination acts against female plants in the gynodioecious Geranium maculatum. — Ann. Bot. 114(8): 1769–1778. https://doi.org/10.1093/aob/mcu204
- Fedorov Al.A., Artyushenko Z.T. 1975. Organographia illustrata plantarum vascularum. Flos. Leningrad. 351 p. (In Russ.).
- Franzén M., Larsson M. 2009. Seed set differs in relation to pollen and nectar foraging flower visitors in an insect-pollinated herb. — Nord. J. Bot. 27(4): 274–283. https://doi.org/10.1111/j.1756-1051.2009.00348.x
- Glazunova K.P., Dlusskiy G.M. 2007. Interrelation between flower structure and pollen vector composition in some Dipsacaceae and Asteraceae with externally similar anthodia. — Zhurn. Obsh. Biol. 68(5): 361–378 (In Russ.).
- Godin V.N. 2019. Distribution of gynodioecy in APG IV system. — Bot. Zhurn. 104(5): 669–683 (In Russ.). https://doi.org/10.1134/S0006813619050053
- Godin V.N. 2020. Distribution of gynodioecy in flowering plants. — Bot. Zhurn. 105(3): 236–252 (In Russ.). https://doi.org/10.31857/S0006813620030023
- Godin V.N., Akhmetgarieva L.R. Gynodioecy of Ajuga reptans (Lamiaceae) in Moscow region. — Bot. Zhurn. 104(8): 1211–1227 (In Russ.). https://doi.org/10.1134/S0006813619080027
- Godin V.N., Astashenkov A.Y., Cheryomushkina V.A. 2023. Gynodioecy in Nepeta gontscharovii (Lamiaceae). — Bot. Zhurn. 108(2): 155–162 (In Russ.). https://doi.org/10.31857/S0006813623020047
- Godin V.N., Astashenkov A.Y., Cheryomushkina V.A., Bobokalonov K.A. 2024. Gynodioecy of Origanum vulgare ssp. gracile (Lamiaceae) in Tajikistan. — Nord. J. Bot. 2024(1): e04148. https://doi.org/10.1111/njb.04148
- Godin V.N. 2023. Sexual polymorphism of Ranunculus acris (Ranunculaceae) in the Moscow region. — Bot. Zhurn. 108(1): 13–22 (In Russ.). https://doi.org/10.31857/S0006813622120031
- Gordeeva N.I., Komarevtseva E.K. 2020. Variability of the gender spectrum in Origanum vulgare L. (Lamiaceae, Magnoliopsida). — Biol. Bull. Russ. Acad. Sci. 47: 1277–1280. https://doi.org/10.1134/S1062359020100076
- Haughn G.W., Somerville C.R. 1988. Genetic control of morphogenesis in Arabidopsis. Dev. Genet. 9(2): 73–89. https://doi.org/10.1002/dvg.1020090202
- Jeon Y.-Ch., Moon H.-K., Kong M.-J., Hong S.-P. 2024. Floral dimorphism of Elsholtzia angustifolia (Loes.) Kitag. (Lamiaceae). — Flora. 319: 152583. https://doi.org/10.1016/j.flora.2024.152583
- Kamath A., Levin R.A., Miller J.S. 2017. Floral size and shape evolution following the transition to gender dimorphism. — Am.J. Bot. 104(3): 451–460. https://doi.org/10.3732/ajb.1600442
- Kamelina O.P., Plisko M.A. 2000. Fam. Dipsacaceae. — In: Comparative anatomy of seeds. Vol. 6. Saint-Petersburg. P. 400–407.
- Knuth P. 1898. Handbuch der Blütenbiologie. Bd. II. T. I. Leipzig. 697 S.
- Koelewijn H.P., Van Damme J.M.M. 1996. Gender variation, partial male sterility and labile sex expression in gynodioecious Plantago coronopus. — New Phytol. 132(1): 67–76. https://doi.org/10.1111/j.1469-8137.1996.tb04510.x
- Larsson M. 2005. Higher pollinator effectiveness by specialist than generalist flower-visitors of unspecialized Knautia arvensis (Dipsacaceae). — Oecologia. 146(3): 394–403. https://doi.org/10.1007/s00442-005–0217-y
- Landergott U., Schneller J.J., Holdregger R., Thompson J.D. 2009. Sex ratio variation and spatial distribution of nuclear and cytoplasmic sex determining genes in gynodioecious Thymus praecox across altitudinal gradients. — Evol. Ecol. Res. 11(1): 23–42.
- Lecoq H. 1857. Étude sur la géographie botanique de l’Europe et, en particulier, sur la végétation du plateau central de la France. T. 6. Paris. 480 p.
- Lewis D., Crowe L.K. 1956. The genetics and evolution of gynodioecy. — Evolution. 10(2): 115–125. https://doi.org/10.1111/j.1558-5646.1956.tb02838.x
- Linnert G. 1958. Kerngesteuerte Gynodiözie bei Salvia nemorosa. — Z. Indukt. Abstamm. Vererbungsl. 89: 36–51. https://doi.org/10.1007/BF00888499
- Liu J., Li C.-Q., Dong Y., Yang X., Wang Y.-Z. 2018. Dosage imbalance of B- and C-class genes causes petaloid-stamen relating to F1 hybrid variation. — BMC Plant Biol. 18(1): 341. https://doi.org/10.1186/s12870-018-1562-4
- Lobo J.A., Ramos D.D.L., Braga A.C. 2016. Visitation rate of pollinators and nectar robbers to the flowers and inflorescences of Tabebuia aurea (Bignoniaceae): effects of floral display size and habitat fragmentation. — Bot. J. Linn. Soc. 181(4): 667–681. https://doi.org/10.1111/boj.12435
- McCauley D.E., Taylor D.R. 1997. Local population structure and sex ratio: evolution in gynodioecious plants. — Amer. Nat. 150(3): 406–420. https://doi.org/10.1086/286072
- Mucina L., Bültmann H., Dierßen K., Theurillat J.-P. et al. 2016. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. — Appl. Veg. Sci. 19(S1): 3–264. https://doi.org/10.1111/avsc.12257
- Müller H. 1873. Befruchtung der Blumen durch Insekten. Leipzig. 478 S.
- Naghiloo S., Claßen-Bockhoff R. 2016. Gradual inhibition of staminate structures results in various degrees of male sterility in Knautia arvensis. — Int. J. Plant Sci. 177(7): 608–617. https://doi.org/10.1086/687511
- Niu Y., Zhang Z.-Q., Liu C.-Q., Li Z.-M., Sun H. 2015. A sexually dimorphic corolla appendage affects pollen removal and floral longevity in gynodioecious Cyananthus delavayi (Campanulaceae). — PLoS ONE. 10(1): e0117149. https://doi.org/10.1371/journal.pone.0117149
- Oak M.K., Song J.H., Hong S.P. 2018. Sexual dimorphism in a gynodioecious species, Aruncus aethusifolius (Rosaceae). — Plant Syst. Evol. 304(4): 473–484. https://doi.org/10.1007/s00606-018-1493-4
- Oskay D. 2017. Reproductive biology of the critically endangered endemic plant Erodium somanum in Turkey. — Turk. J. Bot. 41(2): 171–179. https://doi.org/10.3906/bot-1603-9
- Plack A. 1957. Sexual dimorphism in Labiatae. — Nature. 180(4596): 1218–1219. https://doi.org/10.1038/1801218a0
- Ponomarev A.N., Demyanova E.I. 1975a. To the study of gynodioecy in plants. — Bot. Zhurn. 60(1): 3–15 (In Russ.).
- Ponomarev A.N., Demyanova E.I. 1975b. Nectar secretion in perfect and female flowers of gynodioecious plants. — Biol. nauki. 9: 67–72 (In Russ.).
- Ross M.D. 1969. Digenic inheritance of male sterility in Plantago lanceolata. — Can. J. Genet. Cytol. 11(3): 739–744. https://doi.org/10.1139/g69-086
- Schulz A. 1890. Beiträge zur Kenntniss der Bestäubungseinrichtungen und der Geschlechtsvertheilung bei den Pflanzen. II. — Bibl. Bot. 17: 1–224.
- Sletvold N., Agren J. 2016. Experimental reduction in interaction intensity strongly affects biotic selection. — Ecology. 97(11): 3091–3098. https://doi.org/10.1002/ecy.1554
- Sokal R.R., Rohlf F.J. 2012. Biometry: the principles and practice of statistics in biological research. 4th edition. New York. 937 p.
- Stanton M.L., Young H.J. 1994. Selection for floral character associations in wild radish, Raphanus sativus L. — J. Evol. Biol. 7(3): 271–285. https://doi.org/10.1046/j.1420-9101.1994.7030271.x
- Szabo Z. 1923. The development of the flower of the Dipsacaceae. — Ann. Bot. 37(146): 325–334. https://doi.org/10.1093/oxfordjournals.aob.a089848
- Taylor D.R., Olson M.S., McCauley D.E. 2001. A quantitative genetic analysis of nuclear-cytoplasmic male sterility in structured populations of Silene vulgaris. — Genetics. 158(2): 833–841. https://doi.org/10.1093/genetics/158.2.833
- Theißen G. 2001. Development of floral organ identity: stories from the MADS house. — Curr. Opin. Plant Biol. 4(1): 75–85. https://doi.org/10.1016/s1369-5266(00)00139-4
- Tsuji K., Ohgushi T. 2018. Florivory indirectly decreases the plant reproductive output through changes in pollinator attraction. — Ecol. Evol. 8(5): 2993–3001. https://doi.org/10.1002/ece3.3921
- Van Marrewijk G.A.M. 1969. Cytoplasmic male sterility in Petunia. I. Restoration of fertility with special reference to the influence of environment. — Euphytica. 18(1): 1–20. https://doi.org/10.1007/BF00021977
- Varga S., Soulsbury C.D., John E.A. 2022. Biological Flora of Britain and Ireland: Knautia arvensis. —
- J. Ecol. 110(8): 1970–1992. https://doi.org/10.1111/1365-2745.13938
- Wang H.-X., Liu H., Moore M.J., Landrein S., Liu B., Zhu Z.-H., Wang H.-F. 2020. Plastid phylogenomic insights into the evolution of the Caprifoliaceae s. l. (Dipsacales). — Molec. Phyl. Evol. 142: 106641. https://doi.org/10.1016/j.ympev.2019.106641
Supplementary files
