The role of transposable elements in long-term memory formation
- Authors: Mustafin R.N.1, Khusnutdinova E.K.2
-
Affiliations:
- Bashkir State Medical University
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences
- Issue: Vol 60, No 4 (2024)
- Pages: 3-19
- Section: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://clinpractice.ru/0016-6758/article/view/666939
- DOI: https://doi.org/10.31857/S0016675824040015
- EDN: https://elibrary.ru/crqapn
- ID: 666939
Cite item
Abstract
A number of experimental studies are described that challenge the significance of synaptic plasticity and prove the role of transposable elements in memory consolidation. This is due to the cis-regulatory influence of activated transposable elements on gene expression, as well as insertions into new genomic loci near the genes involved in brain functioning. RNAs and proteins of endogenous retroviruses are transported to dendritic synapses and transmit information to change gene expression in neighboring cells through the formation of virus-like particles in vesicles. Due to this, the relationship between synaptic plasticity and nuclear coding is ensured, since transposable elements are also drivers of epigenetic regulation due to relationship with the non-coding RNAs derived from them. Our analysis of the scientific literature allowed us to identify the role of 17 microRNAs derived from transposable elements in normal memory formation. In neurodegenerative diseases with memory impairment, we identified impaired expression of 44 microRNAs derived from transposable elements. This demonstrates the potential for targeting pathological transposon activation in neurodegenerative diseases for memory restoration using microRNAs as tools.
Full Text

About the authors
R. N. Mustafin
Bashkir State Medical University
Author for correspondence.
Email: ruji79@mail.ru
Russian Federation, Ufa, 450008
E. K. Khusnutdinova
Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences
Email: ruji79@mail.ru
Russian Federation, Ufa, 450054
References
- Ryan T.J., Roy D.S., Pignatelli M. et al. Engram cells retain memory under retrograde amnesia // Science. 2015. V. 348. P. 1007-1013. https://doi.org/10.1126/science.aaa5542
- Takeuchi T., Duszkiewicz A.J., Morris R.G. The synaptic plasticity and memory hypothesis: encoding, storage and persistence // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013. V. 369 (1633). https://doi.org/10.1098/rstb.2013.0288
- Fila M., Diaz L., Szczepanska J. et al. mRNA Trafficking in the nervous system: A key mechanism of the involvement of activity-regulated cytoskeleton-associated protein (Arc) in synaptic plasticity // Neural Plast. 2021. V. 2021. https://doi.org/10.1155/2021/3468795
- Maag J.L.V., Panja D., Sporild I. et al. Dynamic expression of long noncoding RNAs and repeat elements in synaptic plasticity // Front. Neurosci. 2015. V. 9. P. 351. https://doi.org/10.3389/fnins.2015.00351
- Hegde A.N., Smith S.G. Recent developments in transcriptional and translational regulation underlying long-term synaptic plasticity and memory // Learn. Mem. 2019. V. 26. P. 307-317. https://doi.org/10.1101/lm.048769.118
- Buurstede J.C., van Weert L.T.C.M., Coucci P. et al. Hippocalmpal glucocorticoid target genes associated with enhancement of memory consolidation // Eur. J. Neurosci. 2022. V. 55. P. 2666–2683. https://doi.org/doi: 10.1111/ejn.15226
- Tan Y., Yu D., Busto G.U. et al. Wnt signaling is required for long-term memory formation // Cell Rep. 2013. V. 4. № 6. P. 1082–1089. https://doi.org/10.1016/j.celrep.2013.08.007
- Lukel C., Schumann D., Kalisch R. et al. Dopamine related genes differentially affect declarative long-term memory in healthy humans // Front. Behav. Neurosci. 2020. V. 14. https://doi.org/10.3389/fnbeh.2020.539725
- Kaltschmidt B., Kaltschmidt C. NF-KappaB in long-term memory and structual plasticity in the adult mammalian brain // Front. Mol. Neurosci. 2015. V. 8. https://doi.org/10.3389/fnmol.2015.00069
- Noyes N.C., Phan A., Davis R.L. Memory suppressor genes: modulating acquisition, consolidation, and forgetting // Neuron. 2021. V. 109. P. 3211–3227. https://doi.org/10.1016/j.neuron.2021.08.001
- Leach P.T., Poplawski S.G., Kenney J.W. et al. Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory // Learn. Mem. 2012. V. 19. P. 319–324. https://doi.org/10.1101/lm.024984.111
- Gontier G., Iyer M., Shea J.M. et al. Tet2 rescues age-related regenerative decline and enhances cognitive function in the adult mouse brain // Cell. Rep. 2018. V. 22. P. 1974–1981. https://doi.org/10.1016/j.celrep.2018.02.001
- Chalertpet K., Pin-On P., Aporntewan C. et al. Argonaute 4 as an effector protein in RNA-directed DNA methylation in human cells // Front. Genet. 2019. V.https://doi.org/10.3389/fgene.2019.00645
- Shomrat T., Levin M. An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration // J. Exp. Biol. 2013. V. 216. P. 3799–3810.
- Chen S., CaiD., Pearce K. et al. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia // eLife. 2014. V. 3. https://doi.org/10.7554/eLife.03896
- Levine R.B. Changes in neuronal circuits during insect metamorphosis // J. Exp. Biol. 1984. V. 112. P. 27–44. https://doi.org/10.1242/jeb.112.1.27
- Halder R., Hennion H., Vidal R.O. et al. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory // Nat. Neurosci. 2016. V. 19. P. 102–110. https://doi.org/10.1038/nn.4194
- Miller C.A., Gavin C.F., White J.A. et al. Cortical DNA methylation maintains remote memory // Nat. Neurosci. 2010. V. 13. P. 664–666.
- Jarome T.J., Lubin F.D. Epigenetic mechanisms of memory formation and reconsolidation // Neurobiol. Lerarn. Mem. 2014. V. 115. P. 116–127. https://doi.org/10.1016/j.nlm.2014.08.002.
- Mustafin R.N., Khusnutdinova E.K. The role of transposons in epigenetic regulation of ontogenesis // Russ. J. Developmental Biology. 2018. V. 49.
- Ashley J., Cody B., Lucia D. et al. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons // Cell. 2018. V. 172. P. 262–274.
- Pastuzyn E.D., Day C.E., Kearns R.B. et al. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer // Cell. 2018. V. 172. P. 275–288.
- Akhlaghpour H. An RNA-based theory of natural universal computation // J. Theor. Biol. 2022. V. 537. https://doi.org/10.1016/j.jtbi.2021.110984
- Kour S., Rath P.C. Long noncoding RNAs in aging and age-related diseases // Ageing Res. Rev. 2016. V. 26. P. 1–21. https://doi.org/10.1016/j.arr.2015.12.001
- Lu X., Sachs F., Ramsay L. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity // Nat. Struct. Mol. Biol. 2014. V. 21. P. 423–425. https://doi.org/10.1038/nsmb.2799
- Johnson R., Guigo R. The RIDL hypothesis: Transposable elements as functional domains of long noncoding RNAs // RNA. 2014. V. 20. P. 959–976.
- Wei G., Qin S., Li W. et al. MDTE DB: A database for microRNAs derived from Transposable element // IEEE/ACM Trans. Comput. Biol. Bioinform. 2016. V. 13. P. 1155–1160.
- De Koning A.P., Gu W., Castoe T.A. et al. Repetitive elements may comprise over two-thirds of the human genome // PLoS Genetics. 2011. V. 7. e1002384.
- Feschotte C. Transposable elements and the evolution of regulatory networks // Nat. Rev. Genet. 2008. V. 9. P. 397–405. https://doi.org/10.1038/nrg2337
- Mustafin R.N. The Relationship between transposons and transcription factors in the evolution of eukaryotes // J. Evol. Biochem. Physiol. 2019. V. 55. P. 14–22.
- Zhang H., Li J., Ren J. et al. Single-nucleus transcriptomic landscape of primate hippocampal aging // Protein Cell. 2021. V. 12. P. 695–716. https://doi.org/10.1007/s13238-021-00852-9
- Muotri A.R., Marchetto M.C., Coufal N.G. et al. L1 retrotransposition in neurons is modulated by MeCP2 // Nature. 2010. V. 468. P. 443–446.
- Coufal N.G., Garcia-Perez J.L., Peng G.E. et al. L1 retrotransposition in human neural progenitor cells // Nature. 2009. V. 460. P. 1127–1131.
- Baillie J.K., Barnett M.W., Upton K.R. et al. Somatic retrotransposition alters the genetic landscape of the human brain // Nature. 2011. V. 479. P. 534–537. https://doi.org/10.1038/nature10531
- Kurnosov A.A., Ustyugova S.V., Nazarov V.I. et al. The evidence for increased L1 activity in the site of human adult brain neurogenesis // PLoS One. 2015. V. 10. https://doi.org/10.1371/journal.pone.0117854
- Upton K., Gerhardt D.J., Jesuadian J.S. et al. Ubiquitous L1 mosaicism in hippocampal neurons // Cell. 2015. V. 161. P. 228–239.
- Mustafin R.N., Khusnutdinova E.K. The role of transposable elements in the ecological morphogenesis under influence of stress // Vavilov J. Genetics and Breeding. 2019. V. 23. P. 380–389.
- Ponomarev I., Rau V., Eger E.I.et al. Amygdala transcriptome and cellular mechanisms underlying stress-enhanced fear learning in a rat model of posttraumatic stress disorder // Neuropsychopharmacology. 2010. V. 35. P. 1402–1411.
- Hunter R.G., Murakami G., Dewell S. et al. Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response // Proc. Natl Acad. Sci. USA. 2012. V. 109. P. 17657–17662.
- Muotri A.R., Zhao C., Marchetto M.C., Gage F.H. Environmental influence on L1 retrotransposons in the adult hippocampus // Hippocampus. 2009. V. 19. P. 1002–1007. https://doi.org/10.1002/hipo.20564
- Maze I., Feng J., Wilkinson M.B. et al. Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens // Proc. Natl Acad. Sci. USA. 2011. V. 108. P. 3035–3040. https://doi.org/10.1073/pnas.1015483108
- Moszczynska A., Flack A., Qiu P. et al. Neurotoxic methamphetamine doses increase LINE-1 expression in the neurogenic zones of the adult rat brain // Sci. Rep. 2015. V. 5. P. 14356. https://doi.org/10.1038/srep14356
- Ponomarev I., Wang S., Zhang L. et al. Gene coexpression 312 networks in human brain identify epigenetic modifications in alcohol dependence // J. Neurosci. 2012. V. 32. P. 1884–1897.
- Kaeser G., Chun J. Brain cell somatic gene recombination and its phylogenetic foundations // J. Biol. Chem. 2020. V. 295. P. 12786–12795. https://doi.org/10.1074/jbc.REV120.009192
- Sankowski R., Strohl J., Huerta T.S. et al. Endogenous retroviruses are associated with hippocampus-based memory impairment // Proc. Natl Acad. Sci. USA. 2019. V. 116. P. 25982–25990.
- Suberbielle E., Sanchez P.E., Kravitz A.V. et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β // Nat. Neurosci. 2013. V. 16. P. 613–621. https://doi.org/10.1038/nn.3356
- Yenerall P., Zhou L. Identifying the mechanisms of intron gain: progress and trends // Biol. Direct. 2012. V. 7. P. 29.
- Bachiller S., del-Pozo-Martín Y., Carrion A.M. L1 retrotransposition alters the hippocampal genomic landscape enabling memory formation // Brain Behav. Immun. 2017. V. 64. P. 65–70.
- Zhang W.J., Huang Y.Q., Fu A. et al. The retrotransposition of L1 is involved in the reconsolidation of contextual fear memory in mice // CNS Neurol. Disord. Drug Targets. 2021. V. 20. P. 273–284. https://doi.org/10.2174/1871527319666200812225509
- Valles-Saiz L., Avila J., Hernandez F. Lamivudine (3TC), a nucleoside reverse transcriptase inhibitor, prevents the neuropathological alterations present in mutant tau transgenic mice // Int. J. Mol. Sci. 2023. V. 24. P. 11144. https://doi.org/10.3390/ijms241311144
- Sun W., Samimi H., Gamez M. et al. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative taupathies // Nat. Neurosci. 2018. V. 21. P. 1038–1048.
- Ramirez P., Zuniga G., Sun W. et al. Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system // Prog. Neurobiol. 2022. V. 208. P. 102181. https://doi.org/10.1016/j.pneurobio.2021.102181
- Guo C., Jeong H.H., Hsieh Y.C. et al. Tau activates transposable elements in Alzheimerʹs disease // Cell Rep. 2018. V. 23. P. 2874–2880. https://doi.org/10.1016/j.celrep.2018.05.004
- Grundman J., Spencer B., Sarsoza F., Rissman R.A. Transcriptome analyses reveal tau isoform-driven changes in transposable element and gene expression // PLoS One. 2021. V. 16. https://doi.org/10.1371/journal.pone.0251611
- Perrat P.N., DasGupta S., Wang J. et al. Transposon-driven genomic heterogeneity in the Drosophila brain // Science. 2013. V. 340. P. 91–95.
- Lapp H.E., Hunter R.G. The dynamic genome: transposons and environmental adaptation in the nervous system // Epigenomics. 2016. V. 8. 237–249.
- Singer T., McConnell M.J., Marchetto M.C.N. et al. LINE-1 retrotransposons: Mediators of somatic variation in neuronal genomes // Trends Neurosci. 2010. V. 33. P. 345–354. https://doi.org/10.1016/j.tins.2010.04.001
- Linker S.B., Randolph-Moore L., Kottilil K. et al. Identification of bona fide B2 SINE retrotransposon transcription through single-nucleus RNA-seq of the mouse hippocampus // Genome Res. 2020. V. 30. P. 1643–1654. https://doi.org/10.1101/gr.262196.120
- Huang W., Li S., Hu Y.M. et al. Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia // Schizophr. Bull. 2011. V. 37. 988–1000.
- Leal G., Comprido D., Duarte C.B. BDNF-induced local protein synthesis and synaptic plasticity // Neuropharmacology. 2014. V. 76Pt. P. 639–656.
- Li W., Prazak L., Chatterjee N. et al. Activation of transposable elements during aging and neuronal decline in Drosophila // Nat. Neurosci. 2013. V. 16. P. 529–531. https://doi.org/10.1038/nn.3368
- Mustafin R.N., Khusnutdinova E. Perspecitve for studing the relationship of miRNAs with transposable elements // Curr. Iss. in Mol. Biology. 2023. V. 45. P. 3122–3145.
- Campillos M., Doerks T., Shah P.K., Bork P. Computational characterization of multiple Gag-like human proteins // Trends Genet. 2006. V. 22. P. 585–589.
- Zhang W., Chuang Y.A., Na Y. et al. Arc oligomerization is regulated by CaMKII phosphorylation of the GAG domain: An essential mechanism for plasticity and memory formation // Mol. Cell. 2019. V. 75. P. 13–25. https://doi.org/10.1016/j.molcel.2019.05.004.
- Kaneko-Ishino T., Ishino F. Evolution of brain functions in mammals and LTR retrotransposon-derived genes // Uirusu. 2016. V. 66. P. 11–20. https://doi.org/10.2222/jsv.66.11
- Irie M., Yoshikawa M., Ono R. et al. Cognitive function related to the Sirh11/Zcchc16 gene acquired from an LTR retrotransposon in Eutherians // PLoS Genet. 2015. V. 11. https://doi.org/10.1371/journal.pgen.1005521
- Pandya N.J., Wang C., Costa V. et al. Secreted retrovirus-like GAG-domain-containing protein PEG10 is regulated by UBE3A and is involved in Angelman syndrome pathophysiology // Cell. Rep. Med. 2021. V. 2. https://doi.org/10.1016/j.xcrm.2021.100360
- Volff J.N. Turning junk into gold: Domestication of transposable elements and the creation of new genes in eukaryotes // Bioessays. 2006. V. 28. P. 913–922.
- Alzohairy A.M., Gyulai G., Jansen R.K., Bahieldin A. Transposable elements domesticated and neofunctionalized by eukaryotic genomes // Plasmid. 2013. V. 69. P. 1–15.
- Steplewski A., Krynska B., Tretiakova A. et al. MyEF-3, a developmentally controlled brain-derived nuclear protein which specifically interacts with myelin basic protein proximal regulatory sequences // Biochem. Biophys. Res. Commun. 1998. V. 243. P. 295–301. https://doi.org/10.1006/bbrc.1997.7821
- Chou M.Y., Hu M.C., Chen P.Y. et al. RTL1/PEG11 imprinted in human and mouse brain mediates anxiety-like and social behaviors and regulates neuronal excitability in the locus coeruleus // Hum. Mol. Genet. 2022. V. 31. P. 3161–3180. https://doi.org/10.1093/hmg/ddac110
- Dlakic M., Mushegian A. Prp8, the pivotal protein of the spliseosomal catalytic center, evolved from a retroelement – encoded reverse transcriptase // RNA. 2011. V. 17. P. 799–808.
- Cobeta I.M., Stadler C.B., Li J. et al. Specification of Drosophila neuropeptidergic neurons by the splicing component brr2 // PLoS Genet. 2018. V. 14. https://doi.org/10.1371/journal.pgen.1007496
- Kopera H.C., Moldovan J.B., Morrish T.A. et al. Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase // Proc. Natl Acad. Sci. USA. 2011. V. 108. P. 20345–20350.
- Zhou Q.G., Liu M.Y., Lee H.W. et al. Hippocampal TERT regulates spatial memory formation through modulation of neural development // Stem Cell Reports. 2017. V. 9. P. 543–556. https://doi.org/10.1016/j.stemcr.2017.06.014
- Honson D.D., Macfarlan T.S. A lncRNA-like role for LINE1s in development // Dev. Cell. 2018. V. 46. P. 132–134.
- Chen W., Qin C. General hallmarks of microRNAs in brain evolution and development // RNA Biol. 2015. V. 12. P. 701–708. https://doi.org/10.1080/15476286.2015.1048954
- Grinkevich L.N. The role of microRNAs in learning and long-term memory // Vavilov J. Genetic and Breeding. 2020. V. 24. P. 885–896. https://doi.org/10.18699/VJ20.687
- Zhang H., Yu G., Li J. et al. Overexpressing lnc240 rescues learning and memory dysfunction in hepatic encephalopathy through miR-1264-5p/MEF2C axis // Mol. Neurobiol. 2023. V. 60. P. 2277–2294. https://doi.org/10.1007/s12035-023-03205-1
- Xu X.F., Wang Y.C., Zong L., Wang X.L. miR-151-5p modulates APH1a expression to participate in contextual fear memory formation // RNA Biol. 2019. V. 16. P. 282-294. https://doi.org/10.1080/15476286.2019.1572435
- Ryan B., Logan B.J., Abraham W.C., Williams J.M. MicroRNAs, miR-23a-3p and miR-151-3p, are regulated in dentate gyrus neuropil following induction of long-term potentiation in vivo // PLoS One. 2017. V. 12. https://doi.org/10.1371/journal.pone.0170407
- Tang C.Z., Yang J.T., Liu Q.H. et al. Up-regulated miR-192-5p expression rescues cognitive impairment and restores neural function in mice with depression via the Fbln2-mediated TGF-β1 signaling pathway // FASEB J. 2019. V. 33. P. 606–618. https://doi.org/10.1096/fj.201800210RR
- Mainigi M., Rosenzweig J.M., Lei J. et al. Peri-implantation hormonal milieu: Elucidating mechanisms of adverse neurodevelopmental outcomes // Reprod. Sci. 2016. V. 23. P. 785–794. https://doi.org/10.1177/1933719115618280
- Li L., Miao M., Chen J. et al. Role of Ten eleven translocation-2 (Tet2) in modulating neuronal morphology and cognition in a mouse model of Alzheimerʹs disease // J. Neurochem. 2021. V. 157. P. 993–1012. https://doi.org/10.1111/jnc.15234
- Bersten D.C., Wright J.A., McCarthy P.J., Whitelaw M.L. Regulation of the neuronal transcription factor NPAS4 by REST and microRNAs // Biochim. Biophys. Acta. 2014. V. 1839. P. 13–24.
- Parsons M.J., Grimm C., Paya-Cano J.L. et al. Genetic variation in hippocampal microRNA expression differences in C57BL/6 J X DBA/2 J (BXD) recombinant inbred mouse strains // BMC Genomics. 2012. V. 13. https://doi.org/10.1186/1471-2164-13-476
- Shan L., Ma D., Zhang C. et al. miRNAs may regulate GABAergic transmission associated genes in aged rats with anesthetics-induced recognition and working memory dysfunction // Brain Res. 2017. V. 1670. P. 191–200. https://doi.org/10.1016/j.brainres.2017.06.027
- Xu L., Xu Q., Xu F. et al. MicroRNA-325-3p prevents sevoflurane-induced learning and memory impairment by inhibiting Nupr1 and C/EBPβ/IGFBP5 signaling in rats // Aging (Albany NY). 2020. V. 12. P. 5209–5220. https://doi.org/10.18632/aging.102942.
- Wibrand K., Pai B., Siripornmongcolchai T. et al. MicroRNA regulation of the synaptic plasticity-related gene Arc // PLoS One. 2012. V. 7. https://doi.org/10.1371/journal.pone.0041688
- Cohen J.E., Lee P.R., Fields R.D. Systematic identification of 3ʹ-UTR regulatory elements in activity-dependent mRNA stability in hippocampal neurons // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014. V. 369. P. 20130509.
- He B., Chen W., Zeng J. et al. MicroRNA-326 decreases tau phosphorylation and neuron apoptosis through inhibition of the JNK signaling pathway by targeting VAV1 in Alzheimerʹs disease // J. Cell. Physiol. 2020. V. 235. P. 480–493. https://doi.org/10.1002/jcp.28988
- Capitano F., Camon J., Licursi V. et al. MicroRNA-335-5p modulates spatial memory and hippocampal synaptic plasticity // Neurobiol. Learn. Mem. 2017. V. 139. P. 63–68.
- Gu Q.H., Yu D., Hu Z. et al. MiR-26a and miR-384-35p are required for LTP maintenance and spine enlargement // Nat. Commun. 2015. V. 6. P. 6789.
- Nair P.S., Raijas P., Ahvenainen M. et al. Misic-listening regulates human microRNA expression // Epigenetics. 2021. V. 16. P. 554–566.
- Eysert F., Coulon A., Boscher E. et al. Alzheimerʹs genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner // Mol. Psychiatry. 2021. V. 26. P. 5592–5607. https://doi.org/10.1038/s41380-020-00926-w
- Stevanato L., Thanabalasundaram L., Vysokov N., Sinden J. D. Investigation of content, stoichiometry and transfer of miRNA from human neural stem cell line derived exosomes // PLoS One. 2016. V. 11. https://doi.org/10.1371/journal.pone.0146353
- Men Y., Yelick J., Jin S. et al. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS // Nat. Commun. 2019. V. 10. P. 4136. https://doi.org/10.1038/s41467-019-11534-w
- Cui G.H., Guo H.D., Li H. et al. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimerʹs disease // Immun Ageing. 2019. V. 16. P. 10. https://doi.org/10.1186/s12979-019-0150-2
- Puig-Parnau I., Garcia-Brito S., Faghihi N. et al. Intracranial self-stimulation modulates levels of SIRT1 protein and neural plasticity-related microRNAs // Mol. Neurobiol. 2020. V. 57. P. 2551–2562. https://doi.org/10.1007/s12035-020-01901-w
- Zhao J., Zhang W., Wang S. et al. Sevoflurane-induced POCD-associated exosomes delivered miR-584-5p regulates the growth of human microglia HMC3 cells through targeting BDNF // Aging (Albany NY). 2022. V. 14. P. 9890–9907. https://doi.org/10.18632/aging.204398.
- Sfera A., Cummings M., Osorio C. Dehydration and cognition in geriatrics: А hydromolecular hypothesis // Front. Mol. Biosci. 2016. V. 3. P. 18.
- Lugli G., Cohen A.M., Bennett D.A. et al. Plasma exosomal miRNAs in persons with and without Alzheimer disease: Altered expression and prospects for biomarkers // PLoS One. 2015. V. 10. https://doi.org/10.1371/journal.pone.0139233.
- Sierksma A., Lu A., Salta E. et al. Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology // Mol. Neurodegener. 2018. V. 13. P. 54.
- Hulst H.E., Schoonheim M.M., Van Geest Q. et al. Memory impairment in multiple sclerosis: relevance of hippocampal activation and hippocampal connectivity // Mult. Scler. 2015. V. 21. P. 1705–1712. https://doi.org/10.1177/1352458514567727
- Bezdicek O., Ballarini T., Buschke H. et al. Memory impairment in Parkinsonʹs disease: The retrieval versus associative deficit hypothesis revisited and reconciled // Neuropsychology. 2019. V. 33. P. 391–405. https://doi.org/10.1037/neu0000503
- Henriques A.D., Machado-Silva W., Leite R.E.P. et al. Genome-wide profiling and predicted significance of post-mortem brain microRNA in Alzheimerʹs disease // Mech. Ageing Dev. 2020. V. 191. https://doi.org/10.1016/j.mad.2020.111352
- Guo R., Fan G., Zhang J. et al. A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimerʹs disease // J. Alzheimers Dis. 2017. V. 60. P. 1365–1377. https://doi.org/10.3233/JAD-170343
- Satoh J., Kino Y., Niida S. MicroRNA-Seq data analysis pipeline to identify blood biomarkers for Alzheimerʹs disease from public data // Biomark. Insight. 2015. V. 10. P. 21–31.
- Liu X.H., Ning F.B., Zhao D.P. et al. Role of miR-211 in a PC12 cell model of Alzheimerʹs disease via regulation of neurogenin 2 // Exp. Physiol. 2021. V. 106. P. 1061–1071. https://doi.org/10.1113/EP088953
- Hong H., Li Y., Su B. Identification of circulating miR-125b as a potential biomarker of Alzheimerʹs disease in APP/PS1 transgenic mouse // J. Alzheimers Dis. 2017. V. 59. P. 1449–1458.
- Zhao X., Wang S., Sun W. Expression of miR-28-3p in patients with Alzheimerʹs disease before and after treatment and its clinical value // Exp. Ther. Med. 2020. V. 20. P. 2218–2226.
- Boese A.S., Saba R., Campbell K. et al. MicroRNA abundance is altered in synaptoneurosomes during prion disease // Mol. Cell. Neurosci. 2016. V. 71. P. 13–24.
- Cai Y., Sun Z., Jia H. et al. Rpph1 upregulates CDC42 expression and promotes hippocampal neuron dendritic spine formation by competing with miR-330-5p // Front. Mol. Neurosci. 2017. V. 10. https://doi.org/10.3389/fnmol.2017.00027.
- Bottero V., Potashkin J.A. Meta-analysis of gene expression changes in the blood of patients with mild cognitive impairment and Alzheimerʹs disease dementia // Int. J. Mol. Sci. 2019. V. 20. https://doi.org/10.3390/ijms20215403
- Lu L., Dai W., Zhu X., Ma T. Analysis of serum miRNAs in Alzheimerʹs disease // Am. J. Alzheimers Dis. Other Demen. 2021. V. 36. https://doi.org/10.1177/15333175211021712.
- Dong Z., Gu H., Guo Q. et al. Profiling of serum exosome miRNA reveals the potential of a miRNA panel as diagnostic biomarker for Alzheimerʹs disease // Mol. Neurobiol. 2021. V. 58. P. 3084–3094.
- Samadian M., Gholipour M., Hajiesmaeili M. et al. The eminent role of microRNAs in the pathogenesis of Alzheimerʹs disease // Front. Aging Neurosci. 2021. V. 13. https://doi.org/10.3389/fnagi.2021.641080
- Cosin-Tomas M., Antonell A., Llado A. et al. Plasma miR-34a-5p and miR-545-3p as early biomarkers of Alzheimerʹs disease: potential and limitations // Mol. Neurobiol. 2017. V. 54. P. 5550–5562. https://doi.org/10.1007/s12035-016-0088-8
- Yaqub A., Mens M.M.J., Klap J.M. et al. Genome-wide profiling of circulatory microRNAs associated with cognition and dementia // Alzheimers Dement. 2023. V. 19. P. 1194–1203. https://doi.org/10.1002/alz.12752
- Zhang C., Lu J., Liu B. et al. Primate-specific miR-603 is implicated in the risk and pathogenesis of Alzheimerʹs disease // Aging. 2016. V. 8. P. 272–290. https://doi.org/10.18632/aging.100887
- Majumder P., Chanda K., Das D. et al. A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimerʹs Disease and Type 2 Diabetes // Biochem. J. 2021. V. 478. P. 32. https://doi.org/10.1042/BCJ20210175
- Qin Z., Han X., Ran J. et al. Exercise-mediated alteration of miR-192-5p is associated with cognitive improvement in Alzheimerʹs disease // Neuroimmunomodulation. 2022. V. 29. P. 36–43. https://doi.org/10.1159/000516928
- Dong H., Li J., Huang L. et al. Serum microRNA profiles serve as novel biomarkers for the diagnosis of Alzheimerʹs disease // Dis. Markers. 2015. V. 2015. P. 625659.
- Barros-Viegas A.T., Carmona V., Ferreiro E. et al. MiRNA-31 improves cognition and abolishes amyloid-β pathology by targeting APP and BACE1 in an animal model of Alzheimerʹs disease // Mol. Ther. Nucleic Acids. 2020. V. 19. P. 1219-1236. https://doi.org/10.1016/j.omtn.2020.01.010
- Sun C., Liu J., Duan F. et al. The role of the microRNA regulatory network in Alzheimerʹs disease: a bioinformatics analysis // Arch. Med. Sci. 2021. V. 18. P. 206–222.
- Barak B., Shvarts-Serebro I., Modai S. et al. Opposing actions of environmental enrichment and Alzheimerʹs disease on the expression of hippocampal microRNAs in mouse models // Transl. Psychiatry. 2013. V. 3. e304. https://doi.org/10.1038/tp.2013.77
- Tan X., Luo Y., Pi D. et al. MiR-340 reduces the accumulation of amyloid-β through targeting BACE1 (β-site amyloid precursor protein cleaving enzyme 1) in Alzheimerʹs disease // Curr. Neurovasc. Res. 2020. V. 17. P. 86–92. https://doi.org/10.2174/1567202617666200117103931
- Dakterzada F., Benitez I.D., Targa A. et al. Reduced levels of miR-342-5p in plasma are associated with worse cognitive evolution in patients with mild Alzheimerʹs disease // Front. Aging Neurosci. 2021. V. 13. https://doi.org/10.3389/fnagi.2021.705989
- Hajjri S. N., Sadigh-Eteghad S., Mehrpour M. et al. Beta-amyloid-dependent mirnas as circulating biomarkers in Alzheimerʹs disease: a preliminary report // J. Mol. Neurosci. 2020. V. 70. P. 871–877. https://doi.org/10.1007/s12031-020-01511-0
- Hu L., Zhang R., Yuan Q. et al. The emerging role of microRNA-4487/6845-3p in Alzheimerʹs disease pathologies is induced by Aβ25-35 triggered in SH-SY5Y cell // BMC Syst. Biol. 2018. V. 12 (Suppl. 7). P. 119. https://doi.org/10.1186/s12918-018-0633-3
- Wang T., Zhao W., Liu Y. et al. MicroRNA-511-3p regulates Aβ1-40 induced decreased cell viability and serves as a candidate biomarker in Alzheimerʹs disease // Exp. Gerontol. 2023. V. 178. https://doi.org/10.1016/j.exger.2023.112195.
- Liu Q.Y., Chang M.N.V., Lei J.X. et al. Identification of microRNAs involved in Alzheimerʹs progression using a rabbit model of the disease // Am. J. Neurodegener Dis. 2014. V. 3. P. 33–44.
- Xu X., Gu D., Xu B. et al. Circular RNA circ_0005835 promotes neural stem cells proliferation and differentiate to neuron and inhibits inflammatory cytokines levels through miR-576-ep in Alzheimerʹs disease // Environ. Sci. Pollut. Res. Int. 2022. V. 29. P. 35934–35943.
- Lau P., Bossers K., Janky R. et al. Alteration of the microRNA network during the progression of Alzheimerʹs disease // EMBO Mol. Med. 2013. V. 5. P. 1613–1634.
- Baek S.J., Ban H.J., Park S.M. et al. Circulating microRNAs as potential diagnostic biomarkers for poor sleep quality // Nat. Sci. Sleep. 2021. V. 13. P. 1001–1012. https://doi.org/10.2147/NSS.S311541
- Schonrock N., Ke Y.D., Humphreys D. et al. Neuronal microRNA deregulation in response to Alzheimerʹs disease amyloid-β // PLoS One. 2010. V. 5. https://doi.org/10.1371/journal.pone.0011070
- Rahman M.R., Islam T., Zaman T. et al. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimerʹs disease: Insights from a systems biomedicine perspective // Genomics. 2020. V. 112. P. 1290–1299.
- Di Palo A.D., Siniscalchi C., Crescente G. et al. Effect of cannabidiolic acid, N-trans-caffeoyltyramine and cannabisin B from hemp seeds on microRNA expression in human neural cells // Curr. Issues Mol. Biol. 2022. V. 44. P. 5106–5116.
- Tan L., Yu J.T., Tan M.S. et al. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimerʹs disease // J. Alzheimers Dis. 2014. V. 40. P. 1017–1027. https://doi.org/10.3233/JAD-132144
- Zhang Y., Xia Q., Lin J. LncRNA H19 attenuates apoptosis in MPTP-induced Parkinsonʹs disease through regulating miR-585-3p/PIK3R3 // Neurochem. Res. 2020. V. 45. P. 1700–1710. https://doi.org/10.1007/s11064-020-03035-w
- Soreq L., Salomonis N., Bronstein M. et al. Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation induced splicing changes that classify brain region transcriptomes // Front. Mol. Neurosci. 2013. V. 6. P. 10 https://doi.org/10.3389/fnmol.2013.00010
- Marsh A. G., Cottrell M. T., Goldman M. F. Epigenetic DNA methylation profiling with MSRE: A quantitative NGS approach using a Parkinsonʹs disease test case // Front. Genet. 2016. V. 7. https://doi.org/10.3389/fgene.2016.00191
- Honorato-Mauer J., Xavier G., Ota V.K. et al. Alterations in microRNA of extracellular vesicles associated with major depression, attention-deficit/hyperactivity and anxiety disorders in adolescents // Transl. Psychiatry. 2023. V. 13. P. 47.
- Goen K., Matby V.E., Lea R.A. et al. Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis // BMC Med. Genomics. 2018. V. 11. P. 48. https://doi.org/10.1186/s12920-018-0365-7
- Liguori M., Nuzziello N., Licciulli F. et al. Combined microRNA and mRNA expression analysis in pediatric multiple sclerosis: An integrated approach to uncover novel pathogenic mechanisms of the disease // Hum. Mol. Genet. 2018. V. 27. P. 66–79. https://doi.org/10.1093/hmg/ddx385
Supplementary files
