Association of long non-coding RNA genes (H19, MEG3, MALAT1, Linc00305, Linc00261, Linc02227, and CDKN2B-AS1) polymorphic loci with chronic obstructive pulmonary disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Chronic obstructive pulmonary disease (COPD) is a chronic lung disease resulting from dynamic, cumulative gene-environment interactions that cause lung tissue injury, alteration of its normal function and acceleration of cellular senescence. Long non-coding RNAs (lncRNAs) function as critical epigenetic regulators of various aspects of cellular senescence. The objective of the present study is to identify the association between polymorphic variants of H19 (rs3741219), MEG3 (rs7158663), MALAT1 (rs619586), LINC00305 (rs2850711), LINC00261 (rs6048205), CDKN2B-AS1 (rs4977574), and LINC02227 (rs2149954) lncRNAs genes with COPD. DNA samples from COPD patients (N = 703) and healthy individuals (N = 655) were studied in this study and polymorphic loci were analyzed by real–time PCR. Association with COPD was established with H19 (rs3741219), MEG3 (rs7158663), LINC02227 (rs2149954), MALAT1 (rs619586) and CDKN2B-AS1 (rs4977574). Polygenic analysis has allowed to identify informative gene-gene combinations that include polymorphic variants of the studied lncRNAs genes and genes encoding molecules of signaling cascades associated with cellular senescence and apoptosis. Multiple regression and ROC-analysis revealed a COPD risk predictive model, which included gene–gene combinations of lncRNAs genes and smoking index (P = 4.01 x 10-48, AUC = 0.87).

Full Text

Restricted Access

About the authors

G. F. Korytina

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University

Author for correspondence.
Email: guly_kory@mail.ru
Russian Federation, Ufa, 450054; Ufa, 450008

L. Z. Akhmadishina

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa State Petroleum Technological University

Email: guly_kory@mail.ru
Russian Federation, Ufa, 450054; Ufa, 450064

V. A. Markelov

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University

Email: guly_kory@mail.ru
Russian Federation, Ufa, 450054; Ufa, 450008

T. R. Nasibullin

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: guly_kory@mail.ru
Russian Federation, Ufa, 450054

Y. G. Aznabaeva

Bashkir State Medical University

Email: guly_kory@mail.ru
Russian Federation, Ufa, 450008

O. V. Kochetova

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: guly_kory@mail.ru
Russian Federation, Ufa, 450054

N. N. Khusnutdinova

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: guly_kory@mail.ru
Russian Federation, Ufa, 450054

A. P. Larkina

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: guly_kory@mail.ru
Russian Federation, Ufa, 450054

N. S. Zagidullin

Bashkir State Medical University

Email: guly_kory@mail.ru
Russian Federation, Ufa, 450008

T. V. Victorova

Bashkir State Medical University

Email: guly_kory@mail.ru
Russian Federation, Ufa, 450008

References

  1. Agustí A., Celli B.R., Criner G.J. et al. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary // Eur. Respir. J. 2023. V. 61. № 4. P. 2300239. doi: 10.1183/13993003.00239-2023
  2. Чучалин А.Г., Авдеев С.Н., Айсанов З.Р. и др. Хроническая обструктивная болезнь легких: федеральные клинические рекомендации по диагностике и лечению // Пульмонология. 2022. Т. 32. № 3. С. 356–392. https://doi.org/10.18093/0869-0189-2022-32-3-356-392
  3. Agustí A., Melén E., DeMeo D.L. et al. Pathogenesis of chronic obstructive pulmonary disease: Understanding the contributions of gene-environment interactions across the lifespan // Lancet Respir. Med. 2022. V. 10. № 5. P. 512–524. doi: 10.1016/S2213-2600(21)00555-5
  4. Brandsma C.A., Van den Berge M., Hackett T.L. et al. Recent advances in chronic obstructive pulmonary disease pathogenesis: From disease mechanisms to precision medicine // J. Pathol. 2020. V. 250. № 5. P. 624–635. doi: 10.1002/path.5364
  5. Bridges M.C., Daulagala A.C., Kourtidis A. LNCcation: lncRNA localization and function // J. Cell Biol. 2021. V. 220. № 2. doi: 10.1083/jcb.202009045
  6. Devadoss D., Long C., Langley R.J. et al. Long noncoding transcriptome in chronic obstructive pulmonary disease // Am. J. Respir. Cell Mol. Biol. 2019. V. 61. № 6. P. 678–688. doi: 10.1165/rcmb.2019-0184TR
  7. Ward L.D., Kellis M. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease // Nucl. Acids Res. 2016. V. 44. № D1. P. D877–881. doi: 10.1093/nar/gkv1340
  8. Korytina G.F., Akhmadishina L.Z., Aznabaeva Y.G. et al. Associations of the NRF2/KEAP1 pathway and antioxidant defense gene polymorphisms with chronic obstructive pulmonary disease // Gene. 2019. V. 692. P. 102–112. doi: 10.1016/j.gene.2018.12.061
  9. González J.R., Armengol L., Solé X. et al. SNPassoc: An R package to perform whole genome association studies // Bioinformatics. 2007. V. 23. № 5. P. 644–645. doi: 10.1093/bioinformatics/btm025
  10. Favorov A.V., Andreewski T.V., Sudomoina M.A. et al. A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans // Genetics. 2005. V. 171. № 4. P. 2113–2121. doi: 10.1534/genetics.105.048090
  11. Korytina G.F., Akhmadishina L.Z., Markelov V.A. et al. Role of PI3K/AKT/mTOR signaling pathway and sirtuin genes in chronic obstructive pulmonary disease development // Vavil. Zh. Genet. Selektsii. 2023. V. 27. № 5. P. 512–521. doi: 10.18699/VJGB-23-62
  12. Song Y., Xing H., Zhou L. et al. LncRNA H19 modulated by miR-146b-3p/miR-1539-mediated allelic regulation in transarterial chemoembolization of hepatocellular carcinoma // Arch. Toxicol. 2021. V. 95. № 9. P. 3063–3070. doi: 10.1007/s00204-021-03119-8
  13. Lu Q., Guo Z., Xie W. et al. The lncRNA H19 mediates pulmonary fibrosis by regulating the miR-196a/COL1A1 Axis // Inflammation. 2018. V. 41. № 3. P. 896–903. doi: 10.1007/s10753-018-0744-4
  14. Xu J.L., Hua T., Ding J. et al. FOXF2 aggravates the progression of non-small cell lung cancer through targeting lncRNA H19 to downregulate PTEN // Eur. Rev. Med. Pharmacol. Sci. 2019. V. 23. № 24. P. 10796–10802. doi: 10.26355/eurrev_201912_19782
  15. Wang R., Zhou S., Wu P. et al. Identifying involvement of H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in treating pulmonary hypertension with melatonin // Mol. Ther. Nucl. Acids. 2018. V. 13. P. 44–54. doi: 10.1016/j.omtn.2018.08.015
  16. Zhang R., Pan T., Xiang Y. et al. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis // Bioact. Mater. 2021. V. 13. P. 23–36. doi: 10.1016/j.bioactmat.2021.11.013
  17. Yu H., Qi N., Zhou Q. LncRNA H19 inhibits proliferation and migration of airway smooth muscle cells induced by PDGF-BB through miR-21/PTEN/Akt axis // J. Asthma Allergy. 2021. V. 14. P. 71–80. doi: 10.2147/JAA.S291333
  18. Bu N., Gao Y., Zhao Y. et al. LncRNA H19 via miR-29a-3p is involved in lung inflammation and pulmonary fibrosis induced by neodymium oxide // Ecotoxicol. Environ. Saf. 2022. V. 247. doi: 10.1016/j.ecoenv.2022.114173
  19. Liao J., Chen B., Zhu Z. et al. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases // Genes Dis. 2023. V. 10. № 4. P. 1351–1366. doi: 10.1016/j.gendis.2023.02.008
  20. Li L., Huang Q., Yan F. et al. Association between long non-coding RNA H19 polymorphisms and breast cancer risk: A meta-analysis // Women Health. 2022. V. 62. № 6. P. 565–575. doi: 10.1080/03630242.2022.2096748
  21. Ghaedi H., Zare A., Omrani M.D. et al. Genetic variants in long noncoding RNA H19 and MEG3 confer risk of type 2 diabetes in an Iranian population // Gene. 2018. V. 675. P. 265–271. doi: 10.1016/j.gene.2018.07.002
  22. Al-Rugeebah A., Alanazi M., Parine N.R. MEG3: An oncogenic long non-coding RNA in different cancers // Pathol. Oncol. Res. 2019. V. 25. № 3. P. 859–874. doi: 10.1007/s12253-019-00614-3
  23. Gokey J.J., Snowball J., Sridharan A. et al. MEG3 is increased in idiopathic pulmonary fibrosis and regulates epithelial cell differentiation // JCI Insight. 2018. V. 3. № 17. doi: 10.1172/jci.insight.122490
  24. Gao X., Li X., Zhang S. et al. The association of MEG3 gene rs7158663 polymorphism with cancer susceptibility // Front. Oncol. 2021. V. 11. doi: 10.3389/fonc.2021.796774.
  25. Li R., Fang L., Pu Q. et al. MEG3-4 is a miRNA decoy that regulates IL-1β abundance to initiate and then limit inflammation to prevent sepsis during lung infection // Sci. Signal. 2018. V. 11. № 536. doi: 10.1126/scisignal.aao2387
  26. Su Y., Silva J.D., Doherty D. et al. Mesenchymal stromal cells-derived extracellular vesicles reprogramme macrophages in ARDS models through the miR-181a-5p-PTEN-pSTAT5-SOCS1 axis // Thorax. 2023. V. 78. № 6. P. 617–630. doi: 10.1136/thoraxjnl-2021-218194
  27. Chen L., Xie W., Wang L. et al. MiRNA-133a aggravates inflammatory responses in sepsis by targeting SIRT1 // Int. Immunopharmacol. 2020. V. 88. doi: 10.1016/j.intimp.2020.106848
  28. Green C.E., Clarke J., Bicknell R. et al. Pulmonary microRNA changes alter angiogenesis in chronic obstructive pulmonary disease and lung cancer // Biomedicines. 2021. V. 9. № 7. doi: 10.3390/biomedicines9070830
  29. Wu H., Ma H., Wang L. et al. Regulation of lung epithelial cell senescence in smoking-induced COPD/emphysema by microR-125a-5p via Sp1 mediation of SIRT1/HIF-1a // Int. J. Biol. Sci. 2022. V. 18. № 2. P. 661–674. doi: 10.7150/ijbs.65861
  30. Zhong S., Chen C., Liu N. et al. Overexpression of hsa-miR-664a-3p Is associated with cigarette smoke-induced chronic obstructive pulmonary disease via targeting FHL1 // Int. J. Chron. Obstruct. Pulmon. Dis. 2019. V. 14. P. 2319–2329. doi: 10.2147/COPD.S224763
  31. Guil S., Soler M., Portela A. et al. Intronic RNAs mediate EZH2 regulation of epigenetic targets // Nat. Struct. Mol. Biol. 2012. V. 19. № 7. P. 664–670. doi: 10.1038/nsmb.2315
  32. Holdt L.M., Teupser D. Long noncoding RNA ANRIL: Lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis // Front. Cardiovasc. Med. 2018. V. 5. doi: 10.3389/fcvm.2018.00145
  33. Van der Harst P., Verweij N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease // Circ. Res. 2018. V. 122. № 3. P. 433–443. doi: 10.1161/CIRCRESAHA.117.312086
  34. Cunnington M.S., Santibanez Koref M., Mayosi B.M. et al. Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression // PLoS Genet. 2010. V. 6. № 4. doi: 10.1371/journal.pgen.1000899
  35. Ge J., Geng S., Jiang H. Long noncoding RNAs antisense noncoding RNA in the INK4 locus (ANRIL) correlates with lower acute exacerbation risk, decreased inflammatory cytokines, and mild GOLD stage in patients with chronic obstructive pulmonary disease // J. Clin. Lab. Anal. 2019. V. 33. № 2. doi: 10.1002/jcla.22678
  36. Deelen J., Beekman M., Uh H.W. et al. Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age // Hum. Mol. Genet., 2014. V. 23. № 16. P. 4420–4432. doi: 10.1093/hmg/ddu139
  37. Sun W., Liu C., Chen Q. et al. SIRT3: A new regulator of cardiovascular diseases // Oxid. Med. Cell Longev. 2018. V. 2018. doi: 10.1155/2018/7293861
  38. Zhang D.D., Wang W.T., Xiong J. et al. Long noncoding RNA LINC00305 promotes inflammation by activating the AHRR-NF-κB pathway in human monocytes // Sci. Rep. 2017. V. 7. doi: 10.1038/srep46204
  39. Wahba A.S., Ibrahim M.E., Mesbah N.M. et al. Serum LINC00305 expression and its genetic variant rs2850711 are associated with clinical and laboratory features of rheumatoid arthritis // Br. J. Biomed. Sci. 2020. V. 77. № 3. P. 142–147. doi: 10.1080/09674845.2020.1744942
  40. Manning A.K., Hivert M.F., Scott R.A. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance // Nat. Genet. 2012. V. 44. № 6. P. 659–669. doi: 10.1038/ng.2274
  41. Johnson M.E., Schug J., Wells A.D. et al. Genome-wide analyses of ChIP-Seq derived FOXA2 DNA occupancy in liver points to genetic networks underpinning multiple complex traits // J. Clin. Endocrinol. Metab. 2014. V. 99. № 8. P.E1580-5. doi: 10.1210/jc.2013-4503
  42. Chen Z., Xiang L., Li L. et al. TGF-β1 induced deficiency of linc00261 promotes epithelial-mesenchymal-transition and stemness of hepatocellular carcinoma via modulating SMAD3 // J. Transl. Med. 2022. V. 20. № 1. P.75. doi: 10.1186/s12967-022-03276-z
  43. Zhu R., Liu X., He Z. Long non-coding RNA H19 and MALAT1 gene variants in patients with ischemic stroke in a northern Chinese Han population // Mol. Brain. 2018. V. 11. № 1. P. 58. doi: 10.1186/s13041-018-0402-7
  44. Chen M., Cai D., Gu H. et al. MALAT1 rs619586 A/G polymorphisms are associated with decreased risk of lung cancer // Medicine (Baltimore). 2021. V. 100. № 12. doi: 10.1097/MD.0000000000023716
  45. Wu W., Wang S., Zhang L. et al. Mechanistic studies of MALAT1 in respiratory diseases // Front. Mol. Biosci. 2022. V. 9. doi: 10.3389/fmolb.2022.1031861

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Study design.

Download (330KB)
3. Fig. 2. Area under the curve (ROC analysis) for assessing the effectiveness of predictive regression models. AUC – area under the curve. Full characteristics of the models are presented in Table 5. Model 1 – AUC = 0.75 (sensitivity – 65.7%, specificity – 71.2%) includes only genetic markers; model 2 – AUC = 0.87 (sensitivity – 74.9%, specificity – 86.3%) includes genetic markers and smoking index.

Download (115KB)

Copyright (c) 2024 Russian Academy of Sciences