Association of long non-coding RNA genes (H19, MEG3, MALAT1, Linc00305, Linc00261, Linc02227, and CDKN2B-AS1) polymorphic loci with chronic obstructive pulmonary disease
- Authors: Korytina G.F.1,2, Akhmadishina L.Z.1,3, Markelov V.A.1,2, Nasibullin T.R.1, Aznabaeva Y.G.2, Kochetova O.V.1, Khusnutdinova N.N.1, Larkina A.P.1, Zagidullin N.S.2, Victorova T.V.2
-
Affiliations:
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
- Bashkir State Medical University
- Ufa State Petroleum Technological University
- Issue: Vol 60, No 9 (2024)
- Pages: 74-89
- Section: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://clinpractice.ru/0016-6758/article/view/667203
- DOI: https://doi.org/10.31857/S0016675824090094
- EDN: https://elibrary.ru/adlqwz
- ID: 667203
Cite item
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease resulting from dynamic, cumulative gene-environment interactions that cause lung tissue injury, alteration of its normal function and acceleration of cellular senescence. Long non-coding RNAs (lncRNAs) function as critical epigenetic regulators of various aspects of cellular senescence. The objective of the present study is to identify the association between polymorphic variants of H19 (rs3741219), MEG3 (rs7158663), MALAT1 (rs619586), LINC00305 (rs2850711), LINC00261 (rs6048205), CDKN2B-AS1 (rs4977574), and LINC02227 (rs2149954) lncRNAs genes with COPD. DNA samples from COPD patients (N = 703) and healthy individuals (N = 655) were studied in this study and polymorphic loci were analyzed by real–time PCR. Association with COPD was established with H19 (rs3741219), MEG3 (rs7158663), LINC02227 (rs2149954), MALAT1 (rs619586) and CDKN2B-AS1 (rs4977574). Polygenic analysis has allowed to identify informative gene-gene combinations that include polymorphic variants of the studied lncRNAs genes and genes encoding molecules of signaling cascades associated with cellular senescence and apoptosis. Multiple regression and ROC-analysis revealed a COPD risk predictive model, which included gene–gene combinations of lncRNAs genes and smoking index (P = 4.01 x 10-48, AUC = 0.87).
Full Text

About the authors
G. F. Korytina
Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University
Author for correspondence.
Email: guly_kory@mail.ru
Russian Federation, Ufa, 450054; Ufa, 450008
L. Z. Akhmadishina
Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa State Petroleum Technological University
Email: guly_kory@mail.ru
Russian Federation, Ufa, 450054; Ufa, 450064
V. A. Markelov
Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University
Email: guly_kory@mail.ru
Russian Federation, Ufa, 450054; Ufa, 450008
T. R. Nasibullin
Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
Email: guly_kory@mail.ru
Russian Federation, Ufa, 450054
Y. G. Aznabaeva
Bashkir State Medical University
Email: guly_kory@mail.ru
Russian Federation, Ufa, 450008
O. V. Kochetova
Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
Email: guly_kory@mail.ru
Russian Federation, Ufa, 450054
N. N. Khusnutdinova
Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
Email: guly_kory@mail.ru
Russian Federation, Ufa, 450054
A. P. Larkina
Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
Email: guly_kory@mail.ru
Russian Federation, Ufa, 450054
N. S. Zagidullin
Bashkir State Medical University
Email: guly_kory@mail.ru
Russian Federation, Ufa, 450008
T. V. Victorova
Bashkir State Medical University
Email: guly_kory@mail.ru
Russian Federation, Ufa, 450008
References
- Agustí A., Celli B.R., Criner G.J. et al. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary // Eur. Respir. J. 2023. V. 61. № 4. P. 2300239. doi: 10.1183/13993003.00239-2023
- Чучалин А.Г., Авдеев С.Н., Айсанов З.Р. и др. Хроническая обструктивная болезнь легких: федеральные клинические рекомендации по диагностике и лечению // Пульмонология. 2022. Т. 32. № 3. С. 356–392. https://doi.org/10.18093/0869-0189-2022-32-3-356-392
- Agustí A., Melén E., DeMeo D.L. et al. Pathogenesis of chronic obstructive pulmonary disease: Understanding the contributions of gene-environment interactions across the lifespan // Lancet Respir. Med. 2022. V. 10. № 5. P. 512–524. doi: 10.1016/S2213-2600(21)00555-5
- Brandsma C.A., Van den Berge M., Hackett T.L. et al. Recent advances in chronic obstructive pulmonary disease pathogenesis: From disease mechanisms to precision medicine // J. Pathol. 2020. V. 250. № 5. P. 624–635. doi: 10.1002/path.5364
- Bridges M.C., Daulagala A.C., Kourtidis A. LNCcation: lncRNA localization and function // J. Cell Biol. 2021. V. 220. № 2. doi: 10.1083/jcb.202009045
- Devadoss D., Long C., Langley R.J. et al. Long noncoding transcriptome in chronic obstructive pulmonary disease // Am. J. Respir. Cell Mol. Biol. 2019. V. 61. № 6. P. 678–688. doi: 10.1165/rcmb.2019-0184TR
- Ward L.D., Kellis M. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease // Nucl. Acids Res. 2016. V. 44. № D1. P. D877–881. doi: 10.1093/nar/gkv1340
- Korytina G.F., Akhmadishina L.Z., Aznabaeva Y.G. et al. Associations of the NRF2/KEAP1 pathway and antioxidant defense gene polymorphisms with chronic obstructive pulmonary disease // Gene. 2019. V. 692. P. 102–112. doi: 10.1016/j.gene.2018.12.061
- González J.R., Armengol L., Solé X. et al. SNPassoc: An R package to perform whole genome association studies // Bioinformatics. 2007. V. 23. № 5. P. 644–645. doi: 10.1093/bioinformatics/btm025
- Favorov A.V., Andreewski T.V., Sudomoina M.A. et al. A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans // Genetics. 2005. V. 171. № 4. P. 2113–2121. doi: 10.1534/genetics.105.048090
- Korytina G.F., Akhmadishina L.Z., Markelov V.A. et al. Role of PI3K/AKT/mTOR signaling pathway and sirtuin genes in chronic obstructive pulmonary disease development // Vavil. Zh. Genet. Selektsii. 2023. V. 27. № 5. P. 512–521. doi: 10.18699/VJGB-23-62
- Song Y., Xing H., Zhou L. et al. LncRNA H19 modulated by miR-146b-3p/miR-1539-mediated allelic regulation in transarterial chemoembolization of hepatocellular carcinoma // Arch. Toxicol. 2021. V. 95. № 9. P. 3063–3070. doi: 10.1007/s00204-021-03119-8
- Lu Q., Guo Z., Xie W. et al. The lncRNA H19 mediates pulmonary fibrosis by regulating the miR-196a/COL1A1 Axis // Inflammation. 2018. V. 41. № 3. P. 896–903. doi: 10.1007/s10753-018-0744-4
- Xu J.L., Hua T., Ding J. et al. FOXF2 aggravates the progression of non-small cell lung cancer through targeting lncRNA H19 to downregulate PTEN // Eur. Rev. Med. Pharmacol. Sci. 2019. V. 23. № 24. P. 10796–10802. doi: 10.26355/eurrev_201912_19782
- Wang R., Zhou S., Wu P. et al. Identifying involvement of H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in treating pulmonary hypertension with melatonin // Mol. Ther. Nucl. Acids. 2018. V. 13. P. 44–54. doi: 10.1016/j.omtn.2018.08.015
- Zhang R., Pan T., Xiang Y. et al. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis // Bioact. Mater. 2021. V. 13. P. 23–36. doi: 10.1016/j.bioactmat.2021.11.013
- Yu H., Qi N., Zhou Q. LncRNA H19 inhibits proliferation and migration of airway smooth muscle cells induced by PDGF-BB through miR-21/PTEN/Akt axis // J. Asthma Allergy. 2021. V. 14. P. 71–80. doi: 10.2147/JAA.S291333
- Bu N., Gao Y., Zhao Y. et al. LncRNA H19 via miR-29a-3p is involved in lung inflammation and pulmonary fibrosis induced by neodymium oxide // Ecotoxicol. Environ. Saf. 2022. V. 247. doi: 10.1016/j.ecoenv.2022.114173
- Liao J., Chen B., Zhu Z. et al. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases // Genes Dis. 2023. V. 10. № 4. P. 1351–1366. doi: 10.1016/j.gendis.2023.02.008
- Li L., Huang Q., Yan F. et al. Association between long non-coding RNA H19 polymorphisms and breast cancer risk: A meta-analysis // Women Health. 2022. V. 62. № 6. P. 565–575. doi: 10.1080/03630242.2022.2096748
- Ghaedi H., Zare A., Omrani M.D. et al. Genetic variants in long noncoding RNA H19 and MEG3 confer risk of type 2 diabetes in an Iranian population // Gene. 2018. V. 675. P. 265–271. doi: 10.1016/j.gene.2018.07.002
- Al-Rugeebah A., Alanazi M., Parine N.R. MEG3: An oncogenic long non-coding RNA in different cancers // Pathol. Oncol. Res. 2019. V. 25. № 3. P. 859–874. doi: 10.1007/s12253-019-00614-3
- Gokey J.J., Snowball J., Sridharan A. et al. MEG3 is increased in idiopathic pulmonary fibrosis and regulates epithelial cell differentiation // JCI Insight. 2018. V. 3. № 17. doi: 10.1172/jci.insight.122490
- Gao X., Li X., Zhang S. et al. The association of MEG3 gene rs7158663 polymorphism with cancer susceptibility // Front. Oncol. 2021. V. 11. doi: 10.3389/fonc.2021.796774.
- Li R., Fang L., Pu Q. et al. MEG3-4 is a miRNA decoy that regulates IL-1β abundance to initiate and then limit inflammation to prevent sepsis during lung infection // Sci. Signal. 2018. V. 11. № 536. doi: 10.1126/scisignal.aao2387
- Su Y., Silva J.D., Doherty D. et al. Mesenchymal stromal cells-derived extracellular vesicles reprogramme macrophages in ARDS models through the miR-181a-5p-PTEN-pSTAT5-SOCS1 axis // Thorax. 2023. V. 78. № 6. P. 617–630. doi: 10.1136/thoraxjnl-2021-218194
- Chen L., Xie W., Wang L. et al. MiRNA-133a aggravates inflammatory responses in sepsis by targeting SIRT1 // Int. Immunopharmacol. 2020. V. 88. doi: 10.1016/j.intimp.2020.106848
- Green C.E., Clarke J., Bicknell R. et al. Pulmonary microRNA changes alter angiogenesis in chronic obstructive pulmonary disease and lung cancer // Biomedicines. 2021. V. 9. № 7. doi: 10.3390/biomedicines9070830
- Wu H., Ma H., Wang L. et al. Regulation of lung epithelial cell senescence in smoking-induced COPD/emphysema by microR-125a-5p via Sp1 mediation of SIRT1/HIF-1a // Int. J. Biol. Sci. 2022. V. 18. № 2. P. 661–674. doi: 10.7150/ijbs.65861
- Zhong S., Chen C., Liu N. et al. Overexpression of hsa-miR-664a-3p Is associated with cigarette smoke-induced chronic obstructive pulmonary disease via targeting FHL1 // Int. J. Chron. Obstruct. Pulmon. Dis. 2019. V. 14. P. 2319–2329. doi: 10.2147/COPD.S224763
- Guil S., Soler M., Portela A. et al. Intronic RNAs mediate EZH2 regulation of epigenetic targets // Nat. Struct. Mol. Biol. 2012. V. 19. № 7. P. 664–670. doi: 10.1038/nsmb.2315
- Holdt L.M., Teupser D. Long noncoding RNA ANRIL: Lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis // Front. Cardiovasc. Med. 2018. V. 5. doi: 10.3389/fcvm.2018.00145
- Van der Harst P., Verweij N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease // Circ. Res. 2018. V. 122. № 3. P. 433–443. doi: 10.1161/CIRCRESAHA.117.312086
- Cunnington M.S., Santibanez Koref M., Mayosi B.M. et al. Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression // PLoS Genet. 2010. V. 6. № 4. doi: 10.1371/journal.pgen.1000899
- Ge J., Geng S., Jiang H. Long noncoding RNAs antisense noncoding RNA in the INK4 locus (ANRIL) correlates with lower acute exacerbation risk, decreased inflammatory cytokines, and mild GOLD stage in patients with chronic obstructive pulmonary disease // J. Clin. Lab. Anal. 2019. V. 33. № 2. doi: 10.1002/jcla.22678
- Deelen J., Beekman M., Uh H.W. et al. Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age // Hum. Mol. Genet., 2014. V. 23. № 16. P. 4420–4432. doi: 10.1093/hmg/ddu139
- Sun W., Liu C., Chen Q. et al. SIRT3: A new regulator of cardiovascular diseases // Oxid. Med. Cell Longev. 2018. V. 2018. doi: 10.1155/2018/7293861
- Zhang D.D., Wang W.T., Xiong J. et al. Long noncoding RNA LINC00305 promotes inflammation by activating the AHRR-NF-κB pathway in human monocytes // Sci. Rep. 2017. V. 7. doi: 10.1038/srep46204
- Wahba A.S., Ibrahim M.E., Mesbah N.M. et al. Serum LINC00305 expression and its genetic variant rs2850711 are associated with clinical and laboratory features of rheumatoid arthritis // Br. J. Biomed. Sci. 2020. V. 77. № 3. P. 142–147. doi: 10.1080/09674845.2020.1744942
- Manning A.K., Hivert M.F., Scott R.A. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance // Nat. Genet. 2012. V. 44. № 6. P. 659–669. doi: 10.1038/ng.2274
- Johnson M.E., Schug J., Wells A.D. et al. Genome-wide analyses of ChIP-Seq derived FOXA2 DNA occupancy in liver points to genetic networks underpinning multiple complex traits // J. Clin. Endocrinol. Metab. 2014. V. 99. № 8. P.E1580-5. doi: 10.1210/jc.2013-4503
- Chen Z., Xiang L., Li L. et al. TGF-β1 induced deficiency of linc00261 promotes epithelial-mesenchymal-transition and stemness of hepatocellular carcinoma via modulating SMAD3 // J. Transl. Med. 2022. V. 20. № 1. P.75. doi: 10.1186/s12967-022-03276-z
- Zhu R., Liu X., He Z. Long non-coding RNA H19 and MALAT1 gene variants in patients with ischemic stroke in a northern Chinese Han population // Mol. Brain. 2018. V. 11. № 1. P. 58. doi: 10.1186/s13041-018-0402-7
- Chen M., Cai D., Gu H. et al. MALAT1 rs619586 A/G polymorphisms are associated with decreased risk of lung cancer // Medicine (Baltimore). 2021. V. 100. № 12. doi: 10.1097/MD.0000000000023716
- Wu W., Wang S., Zhang L. et al. Mechanistic studies of MALAT1 in respiratory diseases // Front. Mol. Biosci. 2022. V. 9. doi: 10.3389/fmolb.2022.1031861
Supplementary files
