L31 Transposons of Hexacorallia: Distribution, Diversity and Evolution
- Authors: Puzakova L.V.1, Puzakov M.V.1, Puzakova P.M.2
-
Affiliations:
- Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences
- Lomonosov Moscow State University, Branch in Sevastopol
- Issue: Vol 60, No 6 (2024)
- Pages: 22-30
- Section: МОЛЕКУЛЯРНАЯ ГЕНЕТИКА
- URL: https://clinpractice.ru/0016-6758/article/view/667243
- DOI: https://doi.org/10.31857/S0016675824060027
- EDN: https://elibrary.ru/BYEJMV
- ID: 667243
Cite item
Abstract
Transposable elements (TE) of eukaryotes – retrotransposons and DNA transposons – are nucleotide sequences that can move from locus to locus of the genome, as well as between the genomes of different organisms. L31 DNA transposons are an ancient and diverse group belonging to the large IS630/Tc1/mariner group. L31 transposons are not widespread and are present in a limited number of taxa. In addition to the sequence encoding the DDE/D transposase, L31 transposons carry another ORF (ORF2). Detailed analysis of L31 elements in the genomes of six-rayed corals has provided detailed information on the distribution, diversity and structure of the elements. Two large groups, L31-duo and L31-uno, were identified, differing in both catalytic domain pattern and structure. As a result of reconstruction of the evolution of L31 transposons, it was suggested that six-rayed corals received L31 transposons from bivalves. At the same time, the split-off group L31-uno may have been obtained by mollusks as a result of horizontal transfer from corals. Studies of the distribution and diversity of TE in marine invertebrates will contribute to a better understanding of the evolutionary processes of TE and their role in the evolutionary history of species.
Full Text

About the authors
L. V. Puzakova
Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences
Email: puzakov.mikh@yandex.ru
Russian Federation, Sevastopol, 299011
M. V. Puzakov
Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences
Author for correspondence.
Email: puzakov.mikh@yandex.ru
Russian Federation, Sevastopol, 299011
P. M. Puzakova
Lomonosov Moscow State University, Branch in Sevastopol
Email: puzakov.mikh@yandex.ru
Russian Federation, Sevastopol, 299001
References
- Kojima K.K. Structural and sequence diversity of eukaryotic transposable elements // Genes Genet. Syst. 2020. V. 94. № 6. P. 233–252. https://doi.org/10.1266/ggs.18-00024
- Wells J.N., Feschotte C.A. Field guide to eukaryotic transposable elements // Annu. Rev. Genet. 2020. V. 54. P. 539–561. https://doi.org/10.1146 annurev-genet-040620-022145
- Wicker T., Sabot F., Hua-Van A. et al. A unified classification system for eukaryotic transposable elements // Nat. Rev. Genet. 2007. V. 8. № 12. P. 973–982. https://doi.org/10.1038/nrg2165
- Kapitonov V.V., Jurka J. A universal classification of eukaryotic transposable elements implemented in Repbase // Nat. Rev. Genet. 2008. V. 9. P. 411–412. https://doi.org/10.1038/nrg2165-c1
- Yuan Y.W., Wessler S.R. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies // Proc. Natl Acad. Sci. USA. 2011. V. 108. № 19. P. 7884–7889. https://doi.org/10.1073/pnas.1104208108
- Arkhipova I.R. Using bioinformatic and phylogenetic approaches to classify transposable elements and understand their complex evolutionary histories // Mob. DNA. 2017. V. 8. № 19. https://doi.org/10.1186/s13100-017-0103-2
- Gao B., Wang Y.L., Diaby M. et al. Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates // Mob. DNA. 2020. V. 11. № 25.
- Shi S., Puzakov M., Guan Z. et al. Prokaryotic and eukaryotic horizontal transfer of Sailor (dd82e), a new superfamily of IS630-Tc1-Mariner DNA-transposons // Biology (Basel). 2021. V. 10. № 10. https://doi.org/10.3390/biology10101005
- Puzakov M.V., Puzakova L.V. Structure and evolution of DNA transposons of the L31 superfamily in Bivalves // Mol. Biol. 2024. V. 58. № 1. P. 57–75. https://doi.org/10.1134/S0026893324010114
- Shi S., Puzakov M.V., Puzakova L.V. et al. Hiker, a new family of DNA transposons encoding transposases with DD35E motifs, displays a distinct phylogenetic relationship with most known DNA transposon families of IS630-Tc1-mariner (ITm) // Mol. Phylog. Evol. 2023. V. 188. https://doi.org/10.1016/j.ympev.2023.107906
- Aziz R.K., Breitbart M., Edwards R.A. Transposases are the most abundant, most ubiquitous genes in nature // Nucl. Ac. Res. 2010. V. 38. № 13. P. 4207–4217. https://doi.org/10.1093/nar/gkq140
- Puzakov M.V., Puzakova L.V., Cheresiz S.V. An Analysis of IS630/Tc1/mariner transposons in the genome of a pacific oyster Crassostrea gigas // J. Mol. Evol. 2018. V. 86. № 8. P. 566–580. https://doi.org/10.1007/s00239-018-9868-2
- Dupeyron M., Baril T., Bass C., Hayward A. Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements // Mob. DNA. 2020. V. 11. № 21. https://doi.org/10.1186/s13100-020-00212-0
- Tellier M., Bouuaert C.C., Chalmers R. Mariner and the ITm superfamily of transposons // Microbiol. Spectr. 2015. V. 3. № 2. https://doi.org/10.1128/microbiolspec.MDNA3-0033-2014
- Ivics Z., Izsvák Z. Sleeping Beauty transposition // Microbiol. Spectr. 2015. V. 3. № 2. https://doi.org/10.1128/microbiolspec.MDNA3-0042-2014
- Jahn C.L., Doktor S.Z., Frels J.S. et al. Structures of the Euplotes crassus Tec1 and Tec2 elements: Identification of putative transposase coding regions // Gene. 1993. V. 133. № 1. P. 71–78. https://doi.org/10.1016/0378-1119(93)90226-s
- Chen X., Landweber L.F. Phylogenomic analysis reveals genome-wide purifying selection on TBE transposons in the ciliate Oxytricha // Mob. DNA. 2016. V. 7. № 2. https://doi.org/10.1186/s13100-016-0057-9
- Dupeyron M., Singh K.S., Bass C., Hayward A. Evolution of Mutator transposable elements across eukaryotic diversity // Mob. DNA. 2019. V. 10. № 12. https://doi.org/10.1186/s13100-019-0153-8
- Doak T.G., Witherspoon D.J., Jahn C.L., Herrick G. Selection on the genes of Euplotes crassus Tec1 and Tec2 transposons: Evolutionary appearance of a programmed frameshift in a Tec2 gene encoding a tyrosine family site-specific recombinase // Eukaryot. Cell. 2003. V. 2. № 1. P. 95–102. https://doi.org/10.1128/EC.2.1.95-102.2003
- Altschul S.F., Madden T.L., Schäffer A.A. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs // Nucl. Ac. Res. 1997. V. 25. № 17. P. 3389–3402. https://doi.org/10.1093/nar/25.17.3389
- Buchan D.W.A., Jones D.T. The PSIPRED protein analysis workbench: 20 years on // Nucl. Ac. Res. 2019. V. 47. P. 402–407. https://doi.org/10.1093/nar/gkz297
- Crooks G.E., Hon G., Chandonia J.M., Brenner S.E. WebLogo: A sequence logo generator // Genome Res. 2004. V. 14. № 6. P. 1188–1190. https://doi.org/10.1101/gr.849004
- Hoang D.T., Chernomor O., von Haeseler A. et al. UFBoot2: Improving the ultrafast bootstrap approximation // Mol. Biol. Evol. 2018. V. 35. № 2. P. 518–522. https://doi.org/10.1093/molbev/msx281
- Kalyaanamoorthy S., Minh B.Q., Wong T.K.F. et al. ModelFinder: Fast model selection for accurate phylogenetic estimates // Nat. Methods. 2017. V. 14. № 6. P. 587–589. https://doi.org/10.1038/nmeth.4285
- Yamada K.D., Tomii K., Katoh K. Application of the MAFFT sequence alignment program to large data – Reexamination of the usefulness of chained guide trees // Bioinformatics. V. 32. № 21. P. 3246–3251. https://doi.org/10.1093/bioinformatics/btw4122016
- Kumar M., Suleski J.E., Craig A.E. et al. TimeTree 5: An expanded resource for species divergence times // Mol. Biol. Evol. 2022. V. 39(8). https://doi.org/10.1093/molbev/msac174
- Wallau G. L., Ortiz M. F., Loreto E. L. Horizontal transposon transfer in eukarya: detection, bias, and perspectives // Genome Biol. Evol. 2012. V. 4. № 8. P. 689–699. https://doi.org/10.1093/gbe/evs055
- Melo E.S., Wallau G.L. Mosquito genomes are frequently invaded by transposable elements through horizontal transfer // PLoS Genet. 2020. V. 16(11). https://doi.org/10.1371/journal.pgen.1008946
- Blumenstiel J.P. Birth, school, work, death, and resurrection: The life stages and dynamics of transposable element proliferation // Genes (Basel). 2019. V. 10. № 5. https://doi.org/10.3390/genes10050336
Supplementary files
