Whole genome RNA sequencing of spermatozoa from holstein bulls with various cryoresistance

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Whole-genome RNA sequencing (RNA-Seq) was performed to compare sperm transcript profiles from bulls with different sperm productivity characteristics and cryotolerance. Ejaculates from Holstein bulls classified as having high and low cryopreservability and sperm productivity (НСS and LCS), respectively; n = 3 bulls per group) were analyzed for post-thaw motility, mitochondrial membrane potential, plasma membrane integrity, and acrosomes. Total RNA was isolated from decryopreserved spermatozoa from GSF and PSF bulls and subjected to RNA-seq (Illumina NextSeq 500 platform), and transcript arrays were assessed using DESeq2, DESeq packages in each bull's spermatozoa. Several differentially expressed genes (DEGs) related to inflammation (IRG1, MMP12), spermatogenesis (Col4A2,), and unknown function (LOC 781178, LOC618942) were identified that were preferentially downregulated in ejaculates with poor cryotolerance.

Texto integral

Acesso é fechado

Sobre autores

O. Barkova

L.K. Ernst Federal Research Center for Animal Husbandry

Email: barkoffws@list.ru

All-Russian Research Institute of Genetics and Breeding of Farm Animals (VNIIGRZh)

Rússia, Pushkin, St. Petersburg

D. Starikova

L.K. Ernst Federal Research Center for Animal Husbandry

Email: barkoffws@list.ru

All-Russian Research Institute of Genetics and Breeding of Farm Animals (VNIIGRZh)

Rússia, Pushkin, St. Petersburg

I. Chistyakova

L.K. Ernst Federal Research Center for Animal Husbandry

Email: barkoffws@list.ru

All-Russian Research Institute of Genetics and Breeding of Farm Animals (VNIIGRZh)

Rússia, Pushkin, St. Petersburg

N. Pleshanov

L.K. Ernst Federal Research Center for Animal Husbandry

Autor responsável pela correspondência
Email: barkoffws@list.ru

All-Russian Research Institute of Genetics and Breeding of Farm Animals (VNIIGRZh)

Rússia, Pushkin, St. Petersburg

Bibliografia

  1. Benson J.D., Woods E.J., Walters E.M. et al. The cryobiology of spermatozoa // Theriogenology. 2012. V. 78. № 8. Р. 1682–1699. https://doi.org/10.1016/j.theriogenology.2012.06.007
  2. Lemma A. Effect of cryopreservation on sperm quality and fertility, artificial insemination in farm animals // Milad Manafi: IntechOpen. 2011. https://doi.org/ 10.5772/16563
  3. Kumar A., Prasad J.K., Srivastava N. et al. Strategies to minimize various stress-related freeze–thaw damages during conventional cryopreservation of mammalian spermatozoa // Biopreserv. Biobank. 2019. V. 17. Р. 603–612. https://doi.org/10.1089/bio.2019.0037
  4. Bailey J.L., Bilodeau J.F., Cormier N. Semen cryopreservation in domestic animals: A damaging and capacitating phenomenon // J. Androl. 2000. V. 21. Р. 1–7. https://doi.org/10.1002/j.1939-4640.2000.tb03268.x
  5. Fraser L., Brym P., Mogielnicka-Brzozowska M. et al. Total RNA quality in boar spermatozoa with different freezability // Pol. J. Vet. Sci. 2019. V. 22. https://doi.org/ 10.24425/pjvs.2019.127085
  6. Khan M.Z., Sathanawongs A., Zhang Y. et al. Impact of cryopreservation on spermatozoa freeze-thawed traits and relevance. OMICS to assess sperm cryo-tolerance in farm animals // Front Vet. Sci. 2021. V. 8. P. 609–618. https://doi.org/10.3389/fvets.2021.609180
  7. Ďuračka M., Benko F., Tvrdá E. Molecular markers: A new paradigm in the prediction of sperm freezability // Int. J. Mol. Sci. 2023. V. 24. № 4. https://doi.org/10.3390/ijms24043379.
  8. Shangguan A., Zhou H., Sun W. et al. Cryopreservation induces alterations of miRNA and mRNA fragment profiles of bull sperm // Front. Genet. 2020. V. 11. Article number 32431726. https://doi.org/10.3389/fgene.2020.00419
  9. Fraser L., Brym P., Pareek C.S. et al. Transcriptome analysis of boar spermatozoa with different freezability using RNA-Seq // Theriogenology. 2020. V. 142. Р. 400–413. https://doi.org/10.1016/j.theriogenology.2019.11.001
  10. Highland H.N., Rishika A.S., Almira S.S. et al. Ficoll-400 density gradient method as an effective sperm preparation technique for assisted reproductive techniques// J. Hum. Reprod. Sci. 2016. V. 9. № 3. P. 194–199. https://doi.org/10.4103/0974-1208.192070
  11. Jiang H., Lei R., Ding S.W. et al. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads // In BMC Bioinformatics. 2014. V. 15. https://doi.org/ 10.1186/1471-2105-15-182
  12. Andrews S. FastQC: A quality control tool for high throughput sequence data. Available online. http://www.bioinformatics. babraham.ac.uk/projects/fastqc
  13. Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data // Bioinformatics. 2014. V. 30. Р. 2114–2120. https://doi.org/ 10.1093/bioinformatics/btu170
  14. Dobin A., Davis C.A., Schlesinger F. et al. STAR: Ultrafast universal RNA-seq aligner // Bioinformatics. 2013. V. 29. Р. 15–21. https://doi.org/10.1093/bioinformatics/bts635
  15. Anders S., Pyl P.T., Huber W. HTSeq – a Python framework to work with high-throughput sequencing data // Bioinformatics. 2015. V. 31. Р. 166–169. https://doi.org/10.1093/bioinformatics/btu638
  16. Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 // Genome Biology. 2014. V. 15. Р. 550. https://doi.org/10.1186/s13059-014-0550-8
  17. Gene Ontology Consortium et al. The gene ontology knowledgebase in 2023 // Genetics. 2023. V. 224. № 1. https://doi.org/10.1093/genetics/iyad031
  18. Tallam A., Perumal T.M., Antony P.M. et al. Gene regulatory network inference of immunoresponsive gene 1 (IRG1) identifies interferon regulatory factor 1 (IRF1) as its transcriptional regulator in mammalian macrophages // Plos One. 2016. V. 11. https://doi.org/et al. 10.1371/journal.pone.0149050
  19. Naujoks J., Tabeling C., Dill B.D. et al. IFNs modify the proteome of legionella-containing vacuoles and restrict infection via IRG1-derived itaconic acid // PLoS Pathog. 2016. V. 12. https://doi.org/10.1371/journal.ppat.1005408
  20. Chen M., Sun H., Boot M. et al. Itaconate is an effector of a Rab GTPase cell-autonomous host defense pathway against Salmonella // Science. 2020. V. 369. Р. 450–455. https://doi.org/10.1126/science.aaz1333
  21. Jaiswal A.K., Yadav J., Makhija S. et al. Irg1/itaconate metabolic pathway is a crucial determinant of dendritic cells immune-priming function and contributes to resolute allergen-induced airway inflammation // Mucosal Immunol. 2022. V. 15. Р. 301–313. https://doi.org/10.1038/s41385-021-00462
  22. Matulova M., Rajova J., Vlasatikova L. et al. Characterization of chicken spleen transcriptome after infection with Salmonella enterica serovar Enteritidis // PLoS One. 2012. V. 7. № 10. https://doi.org/10.1371/journal.pone.0048101
  23. Smith J., Sadeyen J.R., Paton I.R. et al. Systems analysis of immune responses in Marek's disease virus-infected chickens identifies a gene involved in susceptibility and highlights a possible novel pathogenicity mechanism // J. Virol. 2011. V. 85. № 21. Р. 11146–11158. https://doi.org/10.1128/JVI.05499-11
  24. Ji J., Zhong H., Li Y. et al. IRG1/ACOD1 promotes neutrophil reverse migration and alleviates local inflammation // J. Leukocyte Biol. 2024. V. 116. № 4. Р. 854–863. https://doi.org/10.1093/jleuko/qiae110
  25. Kuntschar S., Cardamone G., Klann K. et al. Mmp12 is translationally regulated in macrophages during the course of inflammation // Int. J. Mol. Sci. 2023. V. 24. № 23. https://doi.org/10.3390/ijms242316981
  26. Zhang J., Zhang J., Yuan C. et al. Establishment of the prognostic index of lung squamous cell carcinoma based on immunogenomic landscape analysis // Cancer Cell Intern. 2020. V. 20. Р. 330. https://doi.org/10.1186/s12935-020-01429-y
  27. Atikuzzaman M., Alvarez-Rodriguez M., Vicente-Carrillo A. et al. Conserved gene expression in sperm reservoirs between birds and mammals in response to ma-ting // BMC Genomics. 2017. V. 18. № 1. Р. 98. https://doi.org/10.1186/s12864-017-3488-x
  28. Kühn K. Basement membrane (type IV) collagen // Matrix Biol. 1995. V. 14. № 6. Р. 439–445. https://doi.org/ 10.1016/0945-053x(95)90001-2
  29. Li L., Li H., Wang L. et al. A local regulatory network in the testis mediated by laminin and collagen fragments that supports spermatogenesis // Crit. Rev. Biochem. Mol. Biol. 2021. V. 56. № 3. P. 236–254. https://doi.org/ 10.1080/10409238.2021.1901255
  30. Kisling A., Lust R.M., Katwa L.C. What is the role of peptide fragments of collagen I and IV in health and disease? // Life Sci. 2019. V. 228. P. 30–34. https://doi.org/ 10.1016/j.lfs.2019.04.042
  31. Liu S.W., Li H.T., Ge R.S. et al. NC1-peptide derived from collagen α3 (IV) chain is a blood-tissue barrier regulator: Lesson from the testis // Asian J. Androl. 2021. V. 23. № 2. P. 123–128. https://doi.org/ 10.4103/aja.aja_44_20
  32. Dai D.H., Qazi I.H., Ran M.-X. et al. Exploration of miRNA and mRNA profiles in fresh and frozen-thawed boar sperm by transcriptome and small RNA sequencing // Int. J. Mol. Sci. 2019. V. 20. № 4. P. 802. https://doi.org/ 10.3390/ijms20040802
  33. Ran M.X., Zhou Y.M., Liang K. et al. Comparative analysis of microRNA and mRNA profiles of sperm with different freeze tolerance capacities in boar (Sus scrofa) and giant panda (Ailuropoda melanoleuca) // Biomolecules. 2019. V. 9. P. 432. https://doi.org/10.3390/biom9090432
  34. Archana S.S., Sevaraju S., Binsila B.K. et al. Immune regulatory molecules as modifiers of semen and fertility: A review // Mol. Reprod. Dev. 2019. 1e20. https://doi.org/10.1002/mrd.23263

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Productive traits of decryopreserved bull sperm. Values ​​are expressed as the mean (±SEM) of three ejaculates from each bull with high (black bar) and low (gray bar) sperm productivity indices (SPI and LPI, respectively). All indices had significant differences in sperm traits of at least P < 0.05.

Baixar (307KB)
3. Fig. 2. Graphical representation of the results of principal component analysis (PCA) and multidimensional scaling (MDS) to determine the distance between sperm transcript samples. (a) PCA plot shows the distance from sample to sample for transcripts of six bulls from two groups (case – bulls from the NCS group, control – bulls from the VCS group); (b) MDS plot shows the distances between samples among bull replications. Blue dots indicate bulls with poor sperm cryoresistance (IRG1, MMP12, Col4A2, LOC 781178, LOC618942).

Baixar (222KB)
4. Fig. 3. Volcano plot of the differentially expressed gene (DegS) in bull sperm. Each dot represents a single gene. Gray dots indicate genes whose expression was slightly differentially upregulated; blue dots indicate genes whose expression was significantly downregulated (log2FC > 1 or < –1, and adjusted P-value < 0.05; FDR < 0.05).

Baixar (168KB)
5. Fig. 4. Gene ontology (GO) analysis of differentially expressed genes (DEGs) in bull spermatozoa differing in cryoresistant ability and fertility qualities.

Baixar (300KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025