The role of polymorphic markers of the FOXP3 gene in the development of essential arterial hypertension

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The association of polymorphic loci –924A>G (rs2232365) and –3279C>A (rs3761548) of the FOXP3 gene with the risk of developing essential arterial hypertension was studied. A total of 151 DNA samples from healthy individuals and 155 DNA samples from patients with EAH (stages I–II) were used. The frequency of occurrence of the –924A>G (rs2232365) polymorphic marker of the FOXP3 gene was almost the same in the groups of conditionally healthy individuals and patients with EAH (χ2 = 0.07 and χ2 = 0.42, p > 0.05, respectively, for alleles and genotypes). The frequency of the CC genotype for the –3279C>A (rs3761548) marker of the FOXP3 gene was higher in the group of patients with hypertension (χ2 = 5.67, p = 0.018). An association was found between the carriage of the CC genotype for rs3761548 and the risk of developing hypertension (OR = 1.967 (95%CI 1.12–3.45)). The level of FOXP3 gene transcripts in peripheral blood leukocytes of healthy people did not depend on the carriage of allelic variants for rs2232365 and rs3761548 (p > 0.05). In carriers of the C allele for the polymorphic marker rs3761548, the content of IL-10 and IL-2 in the blood plasma was lower than in individuals with the AA genotype (p = 0.025, p = 0.017, respectively). The polymorphic marker –3279C>A of the FOXP3 gene is involved in the predisposition of Karelia residents to the development of EAH, probably through the effect on the level of IL-10 and IL-2.

Full Text

Restricted Access

About the authors

L. V. Topchieva

Institute of Biology of Karelian Research Centre Russian Academy of Sciences

Author for correspondence.
Email: topchieva67@mail.ru
Russian Federation, Petrozavodsk

I. V. Kurbatova

Institute of Biology of Karelian Research Centre Russian Academy of Sciences

Email: topchieva67@mail.ru
Russian Federation, Petrozavodsk

V. А. Korneva

Petrozavodsk State University

Email: topchieva67@mail.ru
Russian Federation, Petrozavodsk

G. А. Zhulai

Institute of Biology of Karelian Research Centre Russian Academy of Sciences

Email: topchieva67@mail.ru
Russian Federation, Petrozavodsk

References

  1. Zhang Z., Zhao L., Zhou X. et al. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets // Front. Immunol. 2023. V. 13. https://doi.org/10.3389/fimmu.2022.1098725
  2. Guzik T.J., Nosalski R., Maffia P., Drummond G. Immune and inflammatory mechanisms in hypertension // Nat. Rev. Card. 2024. V. 21. P. 396–416. https://doi.org/10/1038/s41569-023-00964-1
  3. Zhang J., Liu S., Ding W. et al. Resolution of inflammation, an active process to restore the immune microenvironment balance: A novel drug target for treating arterial hypertension // Ageing Res. Rev. 2024. V. 99. https://doi.org/10.1016/j.arr.2024.102352
  4. Dikiy S., Rudensky A.Y. Principles of regulatory T cell function // Immunity. 2023. V. 56. № 2. P. 240–255.
  5. Ovchinnikov A., Filatova A., Potekhina A. et al. Blood immune cell alterations in patients with hypertensive left ventricular hypertrophy and heart failure with preserved ejection fraction // J. Cardiovasc. Dev. Dis. 2023. V. 10. https://doi.org/10.3390/jcdd10070310
  6. Wang Z., Wang J., Yang P. et al. Elevated Th17 cell proportion, related cytokines and mRNA expression level in patients with hypertension-mediated organ damage: A case control study // BMC Cardiovascular Disorders. 2022. V. 22. Р. 257. https://doi.org/10.1186/s12872-022-02698-3
  7. Tang Y., Shen L., Bao J. et al. Deficiency of Tregs in hypertension-associated left ventricular hypertrophy // J. Clin. Hypertens. 2023. V. 25. P. 562–572. https://doi.org/10.1111/jch.14660
  8. Gackowska L., Michałkiewicz J., Helmin-Basa A. et al. Regulatory T-cell subset distribution in children with primary hypertension is associated with hypertension severity and hypertensive target organ damage // J. Hypertens. 2020. V. 38. № 4. P. 692–700. https://doi.org//10.1097/HJH.0000000000002328
  9. Sakaguchi S., Mikami N., Wing J.B. et al. Regulatory T cells and human disease // Annu. Rev. Immun. 2020. V. 38. P. 541–566. https://doi.org/10.1146/annurev-immunol-042718-041717
  10. Golzari-Sorkheh M., Zúñiga-Pflücker J.C. Development and function of FOXP3+ regulators of immune responses // Clin. Exp. Immun. 2023. V. 213. P. 13–22. https://doi.org/10.1093/cei/uxad048
  11. Mertowska P., Mertowski S., Podgajna M., Grynalska E. The Importance of the transcription factor Foxp3 in the development of primary immunodeficiencies // J. Clin. Med. 2022. V. 11. № 4. https://doi.org/10.3390/jcm11040947
  12. Ono M. Control of regulatory T-cell differentiation and function by T-cell signalling and Foxp3 transcription factor complexes // Immunology. 2020. V. 160. P. 24–37. https://doi.org/10.1111/imm/13178
  13. Colamatteo A., Carbone F., Bruzzaniti S. et al. Molecular mechanisms controlling FOXP3 expression in health and autoimmunity: From epigenetic to post-translational regulation // Front. Immunol. 2020. V. 10. https://doi.org/10.3389/fimmu.2019.03136
  14. Dong Y., Yang C., Pan F. Post-translational regulations of Foxp3 in Treg cells and their therapeutic applications // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.626172
  15. Yilmaz K., Haeberle S., Kim Y.O. et al. Regulatory T-cell deficiency leads to features of autoimmune liver disease overlap syndrome in scurfy mice // Front. Immunol. 2023. V. 14. https://doi.org/10.3389/fimmu.2023.1253649
  16. Oda J.M., Hirata B.K., Guembarovski R.L., Watanabe M.A. Genetic polymorphism in FOXP3 gene: Imbalance in regulatory T-cell role and development of human diseases // J. Genet. 2013. V. 92. P. 163–171. https://doi.org/10.1007/s12041-013-0213-7
  17. Shen Z., Chen L., Hao F. et al. Intron-1 rs3761548 is related to the defective transcription of FOXP3 in psoriasis through abrogating E47/c-Myb binding // J. Cell Mol. Med. 2010. V. 14. P. 226–241. https://doi.org/10.1111/j.1582-4934.2008.00370.x
  18. Кобалова Ж.Д., Конради А.О., Недогода С.В. и др. Артериальная гипертензия у взрослых. Клинические рекомендации 2020 // Рос. кардиол. журн. 2020. Т. 25. № 3. https://doi.org/10.15829/1560-4071-2020-3-3786
  19. Mostafa M., Fathy A.A., Elwasify M., Abdelsalam M. Analysis of selected polymorphisms in FOXP3 gene in a cohort of Egyptian patients with schizophrenia // J. Genet. Eng. Biotechnol. 2022. V. 20. Р. 83. https://doi.org/10.1186/s43141-022-00371-y
  20. Inoue C.J., Flauzino T., Gonçalves B.P. FOXP3 variants are independently associated with transforming growth factor B1 plasma levels in female patients with inflammatory bowel disease // Clinics. 2022. V. 11. Р. 58. https://doi.org/10.1016/j.clinsp.2022.100084
  21. Fan Y., Wu J., Yin S. et al. Associations of FOXP3 gene polymorphisms with susceptibility and severity of preeclampsia: Ameta-analysis // Am. J. Reprod. Immunol. 2022. V. 88. № 1. https://doi.org/10.1111/aji.13554
  22. Lu M., Nie J., Shen H. et al. The forkhead box protein P3 gene rs3761548 promoter polymorphism confers a genetic contribution to the risk of preeclampsia: A systematic review and meta-analysis // Cytokine. 2023. V. 164. https://doi.org/10.1016/j.cyto.2023.156164
  23. Liu J., Wang G., Yang J. et al. Association between FOXP3 polymorphisms and expression and neuromyelitis optica spectrum disorder risk in the Nothern Chinese Han population // Translat. Neurosc. 2024. V. 15. https://doi.org/10.1515/tnsci-2022-0337
  24. Giri P.S., Patel S., Begum R. et al. Association of FOXP3 and GAGE10 promoter polymorphisms and decreased FOXP3 expression in regulatory T cells with susceptibility to generalized vitiligo in Gujarat population // Gene. 2021. V. 768. https://doi.org/10.1016/j.gene.2020.145295
  25. Lu L., Barbi J., Pan F. The regulation of immune tolerance by FOXP3 // Nat. Rev. Immun. 2017. V. 17. P. 703–717. https://doi.org/10.1038/nri.2017.75
  26. Saraiva M., Viera P., O’Garra A. Biology and therapeutic potential of interleukin-10 // J. Exp. Med. 2020. V. 217. https://doi.org/10.1084/jem.20190418
  27. Short W.D., Steen E., Kaul A. et al. IL-10 promotes endothelial progenitor cell infiltration and wound healing via STAT3 // FASEB J. 2022. V. 36. № 7. Р. e22298. https://doi.org/10.1096/fj.201901024RR
  28. Gao Y., Tu D., Yang R. et al. Through reducing ROS production, IL-10 supresses caspase-1-dependent IL-1β maturation, thereby preventing chronic neuroinflammation and neurodegeneration // Int. J. Mol. Sci. 2020. V. 21. № 2. https://doi.org/10.3390/ijms21020465
  29. Ezzeddinia R., Somia M.H., Taghikhanib M. et al. Association of FOXP3 rs3761548 polymorphism with cytokines concentration in gastric adenocarcinoma patients // Cytokine. 2021. V. 138. https://doi.org/10.1016/j.cyto.2020.155351
  30. El-Maddawy E.A., Bakry R.M., Moussa M.M. et al. Genetic variation in FOXP3 and ROR-γ genes in pediatric acute lymphocytic leukemia (ALL) patients: Сorrelation with associated cytokines // Discover Oncology. 2022. V. 13. № 1. Р. 86. https://doi.org/10.1007/s12672-022-00549-3
  31. Ramirez R.N., Chowdhary K., Leon J. et al. FOXP3 associates with enhancer-provoter loops to regulate Treg-specific gene expression // Sci. Immunol. 2022. V. 7. № 67. https://doi.org/10.1126/sciimmunol.abj9836
  32. Apert C., Galindo-Albarra´n A.O., Castan S. et al. IL-2 and IL-15 drive intrathymic development of distinct periphery-seeding CD4+Foxp3+ regulatory T lymphocytes // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.965303
  33. Khalifa O., Pers Y., Ferreira R. et al. X-linked miRNAs associated with gender differences in rheumatoid arthritis // Int. J. Mol. Sci. 2016. V. 17. P. 1852–1864. https://doi.org/10.3390/ijms17111852
  34. Zhang W., Tao Z., Xu F. et al. An overview of miRNAs involved in PASMS phenotypic switching in pulmonary hypertension // Biomed. Res. Int. 2021. https://doi.org/10.1155/2021/5765029
  35. Yan Y., Xu Y., Ni G. et al. MicroRNA-221 promotes proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) by targeting tissue inhibitor of metalloproteinases-3 (TIMP3) // Cardiovasc. Diagn. Theоr. 2020. V. 10. № 4. P. 646–657. https://doi.org/10.21037/cdt-20-328
  36. Wang Y., Gao C., Zhou K. et al. MicroRNA-532-5p-programmed cell death protein 4 (PDCD4) axis regulates angiotensin II-induced human umbilical vein endothelial cell apoptosis and proliferation // Microvasc. Res. 2021. V. 138. https://doi.org/10.1016/j.mvr.2021.104195

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The level of FOXP3 gene transcripts (relative units  100,000) in the PBL of healthy people, carriers of different genotypes. (a) – rs2232365, (b) – rs3761548.

Download (77KB)
3. Fig. 2. Concentration of IL-10 (pg/ml) in the blood plasma of healthy people, carriers of different genotypes. (a) – rs2232365, (b) – rs3761548 of the FOXP3 gene.

Download (79KB)
4. Fig. 3. Concentration of IL-2 (pg/ml) in the blood plasma of healthy people, carriers of different genotypes. (a) – rs2232365, (b) – rs3761548 of the FOXP3 gene.

Download (83KB)

Copyright (c) 2025 Russian Academy of Sciences