Analysis of polymorphic variants of cholinergic receptor genes in type 2 diabetes mellitus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Obesity and addictive eating behaviours represent significant causal factors in the development of type 2 diabetes mellitus. Genes encoding muscarinic and nicotinic receptors have been demonstrated to be significant associated with a wide range of psychiatric disorders. Consequently, these genes represent potential markers for the study of predisposition to both disturbed eating behaviour and type 2 diabetes mellitus (T2DM). A total of 992 DNA samples from individuals with T2DM and 1,023 DNA samples from healthy controls were examined. A DEBQ-based assessment of eating behaviour was conducted. The following polymorphic loci were investigated by real-time PCR: CHRNA5 (rs16969968), CHRNA3 (rs1051730), CHRNB4 (rs17487223), CHRM4 (rs206748), CHRNA3 (rs578776), CHRM5 (rs7162140), CHRM1 (rs2067477), CHRNA7 (rs3826029). The present study found an association between the T2DM and the following genetic variants: CHRNA5 rs16969968 (P = 0.00001, OR = 1.72), CHRNA3 rs1051730 (P = 0.00001, OR = 1.812), CHRM5 rs7162140 (P = 0.051, OR = 1.90), and CHRM1 rs2067477 (P = 0.003, OR = 1.41). It was shown an association between the AA haplotype (CHRNA5 rs16969968 – CHRNA3 rs1051730) and the AAT haplotype (CHRNA5 rs16969968 – CHRNA3 rs1051730 – CHRNB4 rs17487223) with the T2DM (P = 0.0004, OR = 1.37; P = 0.00005, OR = 1.34). The CHRNA3 rs578776, CHRNA7 rs3826029, CHRM5 rs7162140 and CHRM1 rs2067477 loci were found to be associated with Restrictive eating behaviour (P = 0.05, 0.003, 0.015, 0.05 respectively). Additionally, the CHRM1 rs2067477 locus was found to be associated with Emotional eating behaviour (P = 0.014), while the CHRNA5 rs16969968 and CHRNB4 rs17487223 gene polymorphisms were found to be associated with External eating behavior (P = 0.05, P = 0.036). The study revealed an association between polymorphic variants of the studied genes and both disturbed eating behaviour and T2DM.

Full Text

Restricted Access

About the authors

O. V. Kochetova

Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University

Email: Olga_MK78@mail.ru

Institute of Biochemistry and Genetics

Russian Federation, Ufa; Ufa

D. Sh. Avsaleydiniva

Bashkir State Medical University

Email: Olga_MK78@mail.ru
Russian Federation, Ufa

T. M. Kochetova

Bashkir State Medical University

Email: Olga_MK78@mail.ru
Russian Federation, Ufa

L. Z. Akhmadishina

Ufa Federal Research Centre of the Russian Academy of Sciences

Email: Olga_MK78@mail.ru

Institute of Biochemistry and Genetics

Russian Federation, Ufa

G. F. Korytina

Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University

Author for correspondence.
Email: Olga_MK78@mail.ru

Institute of Biochemistry and Genetics

Russian Federation, Ufa; Ufa

References

  1. Дедов И.И., Шестакова М.В., Майоров А.Ю. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 10-й выпуск // Сахарный диабет. 2022. T. 24. 1S. C. 1–148.
  2. Halban P.A., Polonsky K.S., Bowden N.W. et al. β-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment // J. Clin. Endocrinol. Metab. 2014. № 99. P. 1983–1992. https://doi.org/10.1210/jc.2014-1425
  3. Zhu Z., Guo Y., Shi H. et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank // J. Allergy Clin. Immunol. 2020. V. 145. № 2. P. 537–549. https://doi.org/10.1016/j.jaci.2019.09.035
  4. Ahrén B. Autonomic regulation of islet hormone secretion – implications for health and disease // Diabetologia. 2000. № 43. P. 393–410. https://doi.org/10.1007/s001250051322
  5. Lausier J., Diaz W.C., Roskens V. et al. Vagal control of pancreatic ß-cell proliferation // Am. J. Physiol. Metab. 2010. № 299. P. E786–E793. https://doi.org/10.1152/ajpendo.00202.2010
  6. Guo Y., Traurig M., Ma L. et al. CHRM3 gene variation is associated with decreased acute insulin secretion and increased risk for early-onset type 2 diabetes in Pima Indians // Diabetes. 2006. V. 55. P. 3625–3629. https://doi.org/10.2337/db06-0379
  7. Gilon P., Henquin J.C. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function // Endocr. Rev. 2001. V. 22. № 5. P. 565–604. https://doi.org/10.1210/edrv.22.5.0440
  8. Ganic E., Singh T., Luan C. et al. MafA-controlled nicotinic receptor expression is essential for insulin secretion and is impaired in patients with type 2 diabetes // Cell Rep. 2016. V. 14. P. 1991–2002. https://doi.org/10.1016/j.celrep.2016.02.002
  9. Gausserès B., Liu J., Foppen E. et al. The constitutive lack of α7 nicotinic receptor leads to metabolic disorders in mouse // Biomolecules. 2020. V. 10. № 7. https://doi.org/10.3390/biom10071057
  10. Ohtani M., Oka T., Badyuk M. et al. Mouse β-TC6 insulinoma cells: High expression of functional α3β4 nicotinic receptors mediating membrane potential, intracellular calcium, and insulin release // Mol. Pharmacol. 2005. V. 69. P. 899–907. https://doi.org/10.1124/mol.105.014902
  11. Haghighatfard A., Ghaderi A.H., Mostajabi P. et al. The first genome-wide association study of internet addiction; revealed substantial shared risk factors with neurodevelopmental psychiatric disorders // Res. Dev. Disabil. 2023. V. 133. https://doi.org/10.1016/j.ridd.2022.104393
  12. Kochetova O.V., Avzaletdinova D.S., Korytina G.F. et al. The association between eating behavior and polymorphisms in GRIN2B, GRIK3, GRIA1 and GRIN1 genes in people with type 2 diabetes mellitus // Mol. Biol. Reports. 2020. V. 47. № 3. P. 2035–2046.
  13. Timasheva Y., Balkhiyarova Z., Avzaletdinova D. et al. Mendelian randomization analysis identifies inverse causal relationship between external eating and metabolic phenotypes // Nutrients. 2024. V. 16. № 8. P. 1166.
  14. Korytina G.F., Akhmadishina L.Z., Viktorova E.V. et al. IREB2, CHRNA5, CHRNA3, FAM13A hedgehog interacting protein genes polymorphisms & risk of chronic obstructive pulmonary disease in Tatar population from Russia // Indian J. Med. Res. 2016. V. 144. № 6. P. 865–876. https://doi.org/10.4103/ijmr.IJMR_1233_14
  15. Abdellaoui A., Smit D., van den Brink W. et al. Genomic relationships across psychiatric disorders including substance use disorders // Drug Alcohol Depend. 2021. V. 220. https://doi.org/10.1016/j.drugalcdep.2021.108535
  16. Duncan L., Deisseroth K. Are novel treatments for brain disorders hiding in plain sight? // Neuropsychopharmacol. 2024. V. 49. P. 276–281. https://doi.org/10.1038/s41386-023-01636-x
  17. Osipov A.V., Averin A.S., Shaykhutdinova E.R. et al. Muscarinic and nicotinic acetylcholine receptors in the regulation of the cardiovascular system // Russ. J. Bioorganic Chem. 2023. V. 49. № 1. P. 1–18.
  18. Culverhouse R.C., Chen L.S., Saccone N.L. et al. Variants in the CHRNA5–CHRNA3–CHRNB4 region of chromosome 15 predict gastrointestinal adverse events in the transdisciplinary tobacco use research center smoking cessation trial // Nicotine Tob. Res. 2020. V. 6. № 2. P. 248–255. https://doi.org/10.1093/ntr/ntz044
  19. Oliveri A., Rebernick R.J., Kuppa A., Pant A. et al. Comprehensive genetic study of the insulin resistance marker TG: HDL-C in the UK Biobank // Nat. Genet. 2024. V. 56. № 2. P. 212–221. https://doi.org/10.1038/s41588-023-01625-2
  20. Freathy R.M., Kazeem G.R., Morris R.W. et al. Genetic variation at CHRNA5–CHRNA3–CHRNB4 interacts with smoking status to influence body mass index // Int. J., Epidem. 2011. V. 40. № 6. P. 1617–1628.
  21. Changeux J.-P. The nicotinic acetylcholine receptor: The founding father of the pentameric ligand-gated ion channel superfamily // J. Biol. Chem. 2012. V. 287. P. 40207–40215. https://doi.org/10.1074/jbc.R112.407668
  22. Ohtani M., Oka T., Badyuk M. et al. Mouse β-TC6 insulinoma cells: High expression of functional α3β4 nicotinic receptors mediating membrane potential, intracellular calcium, and insulin release // Mol. Pharmacol. 2005. V. 69. P. 899–907. https://doi.org/10.1124/mol.105.014902
  23. Hall E., Dekker Nitert M., Volkov P. et al. The effects of high glucose exposure on global gene expression and DNA methylation in human pancreatic islets // Mol. Cell. Endocrinol. 2018. V. 5. № 472. P. 57–67. https://doi.org/10.1016/j.mce.2017.11.019
  24. Chen J., Loukola A., Gillespie N.A. et al. Genome-wide meta-analyses of FTND and TTFC phenotypes // Nicotine Tob. Res. 2020. V. 26–22. № 6. P. 900–909. https://doi.org/10.1093/ntr/ntz09
  25. Brazel D.M., Jiang Y., Hughey J.M. et al. Exome chip meta-analysis fine maps causal variants and elucidates the genetic architecture of rare coding variants in smoking and alcohol use // Biol. Psychiatry. 2019. V. 85. № 11. P. 946–955. https://doi.org/10.1016/j.biopsych.2018.11.024
  26. Cole J.B., Florez J.C., Hirschhorn J.N. Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations // Nat. Communications. 2020. V. 1. P. 1467. https://doi.org/10.1038/s41467-020-15193-0
  27. Донецкова А.Д., Митин А.Н. Роль транскрипционных факторов Foxo в поддержании гомеостаза Т-лимфоцитов // Иммунология. 2017. V. 38. № 3. P. 160–167.
  28. Özdemir F., Kır Y., Tok K.C. et al. A novel genotyping method for detection of the muscarinic receptor M1 gene rs2067477 polymorphism and its genotype/allele frequencies in a Turkish population // Turk. J. Pharm. Sci. 2020. V. 17. № 6. P. 653–658. https://doi.org/10.4274/tjps.galenos.2019.46793
  29. Kır Y., Baskak B., Kuşman A. et al. The relationship between plasma levels of clozapine and N-desmethyclozapine as well as M1 receptor polymorphism with cognitive functioning and associated cortical activity in schizophrenia // Psychiatry Res. Neuroimaging. 2020. V. 303. https://doi.org/10.1016/j.pscychresns.2020.111128
  30. Anney R.J., Lotfi-Miri M., Olsson C.A. et al. Variation in the gene coding for the M5 muscarinic receptor (CHRM5) influences cigarette dose but is not associated with dependence to drugs of addiction: Evidence from a prospective population based cohort study of young adults // BMC Genet. 2007. V. 8. https://doi.org/10.1186/1471-2156-8-46
  31. Wu Z., Nicoll M., Ingham R.J. AP-1 family transcription factors: A diverse family of proteins that regulate varied cellular activities in classical Hodgkin lymphoma and ALK+ ALCL // Exp. Hematol. Oncol. 2021. V. 10. № 4. https://doi.org/10.1186/s40164-020-00197-9
  32. Calabrò M., Mandelli L., Crisafulli C. et al. Genes involved in neurodevelopment, neuroplasticity, and bipolar Disorder: CACNA1C, CHRNA1, and MAPK1 // Neuropsychobiology. 2016. V. 74. № 3. P. 159–168. https://doi.org/10.1159/000468543
  33. Maouche K., Polette M., Jolly T. et al. α7 Nicotinic acetylcholine receptor Regulates airway epithelium differentiation by controlling basal cell proliferation // Am. J. Pathol. 2009. V. 175. P. 1868–1882. https://doi.org/10.2353/ajpath.2009.090212
  34. Catassi A., Servent D., Paleari L. et al. Multiple roles of nicotine on cell proliferation and inhibition of apoptosis: Implications on lung carcinogenesis // Mutat. Res. 2008. V. 659. P. 221–231. https://doi.org/10.1016/j.mrrev.2008.04.002
  35. Wang X., Yang Z., Xue B., Shi H. Activation of the cholinergic antiinflammatory pathway ameliorates obesity-induced inflammation and insulin resistance // Endocrinology. 2011. V. 152. P. 836–846. https://doi.org/10.1210/en.2010-0855
  36. Cancello R., Zulian A., Maestrini S. et al. The nicotinic acetylcholine receptor α7 in subcutaneous mature adipocytes: Downregulation in human obesity and modulation by diet-induced weight loss // Int. J. Obes. 2012. V. 36. P. 1552–1557. https://doi.org/10.1038/ijo.2011.275
  37. Xu T.-Y., Guo L.-L., Wang P. et al. Chronic exposure to nicotine enhances insulin sensitivity through α7 nicotinic acetylcholine receptor-STAT3 pathway // PLoS One. 2012. V. 7. https://doi.org/10.1371/journal.pone.0051217

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. ROC curves for assessing the prognostic ability of regression models for T2DM. AUC – area under the curve. Model 1 includes all studied genes (AUC = 0.604, 95% CI 0.577–0.631; P = 1.25 × 10–13, sensitivity – 78%, specificity – 40%). Model 2 includes all studied genes and adjustments for sex (AUC = 0.725, 95% CI 0.701–0.749; P = 6.4 × 10–58, sensitivity – 76%, specificity – 63%).

Download (162KB)

Copyright (c) 2025 Russian Academy of Sciences