Response of the cutoff rigidity of cosmic rays to changes in the dynamic and magnetic parameters of the solar wind and geomagnetic activity during the storm on March 23–24, 2023

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We investigated the correlations between the cutoff rigidity of cosmic rays and the parameters of interplanetary space, solar wind, and geomagnetic activity during a strong magnetic storm on March 23–24, 2023. The cutoff rigidity of cosmic rays was obtained by calculating the trajectories of particles in the magnetic field of the solar wind according to the Tsyganenko Ts01 model. The analysis showed that the changes in the cutoff rigidity is controlled mainly by changes in the indices of geomagnetic activity Dst (correlation coefficient k ≈ 0.95), as well as electromagnetic parameters — the total value of the interplanetary magnetic field B, its component Bz, the azimuthal component of the electricfield Ey and the plasma parameter β (│k│≈ 0.6–0.75). The parameters of the solar wind such as velocity V, density N, and dynamic pressure P have little effect on the variations of the cosmic ray cutoff rigidity (│k│<0.45).

Full Text

Restricted Access

About the authors

N. G. Ptitsyna

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences

Email: md1555@mail.ru

St. Petersburg Branch

Russian Federation, St. Petersburg

О. А. Danilova

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences

Author for correspondence.
Email: md1555@mail.ru

St. Petersburg Branch

Russian Federation, St. Petersburg

M. I. Тyasto

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences

Email: md1555@mail.ru

St. Petersburg Branch

Russian Federation, St. Petersburg

References

  1. Данилова О.А., Птицына Н.Г., Тясто М.И., Сдобнов В.E. Изменения жесткостей обрезания космических лучей во время бури 8–11 марта 2012 г. в период CAWSES II // Солнечно-земная физика. Т. 9. № 2. С. 86–93. 2023. https://doi.org/10.12737/szf-92202310.
  2. Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномасштабных явлений солнечного ветра для периода 1976–2000 гг. // Космические исследования Т. 47. № 2. С. 99–113. 2009. https://doi.org/10.1134/S0010952509020014.
  3. Куражковская Н.А., Зотов О.Д., Клайн Б.И. Связь развития геомагнитных бурь с параметром β солнечного ветра // Солнечно-земная физика. Т. 7. № 4. С. 25–34. 2021. https://doi.org/10.12737/szf-74202104.
  4. Птицына Н.Г., Данилова О.А., Тясто М.И., Сдобнов В.Е. Влияние параметров солнечного ветра и геомагнитной активности на вариации жесткости обрезания космических лучей во время сильных магнитных бурь // Геомагнетизм и аэрономия. Т. 59. № 5. С. 569–577. 2019. https://doi.org/10.1134/S0016794019050092.
  5. Adriani O., Barbarino G.C., Bazilevskaya G.N. et al. PAMELA’s measurements of geomagnetic cutoff variations during the 14 December 2006 storm // Space weather. V. 14. № 3. P. 210–220. 2016. https://doi.org/10.1002/2016SW001364.
  6. Akasofu S.I. The magnetospheric currents: An introduction. In T. A. Potemra (Ed.), Magnetospheric currents // Geophysical MonographSeries. Washington, DC: American Geophysical Union. V. 28. P. 29–48. 1984. https://doi.org/10.1029/GM028p0029.
  7. Alexeev I.I., Kalegaev V.V., Belenkaya E.S., Bobrovnikov S.Y., Feldstein Ya.I., and Gromova L.I. Dynamic Model of the Magnetosphere: Case Study for January 9–12, 1997 // J. Geophys. Res. V. 106. P. 25683–25694. 2001. https://doi.org/10.1029/2001JA900057.
  8. Antonova E.E. Magnetostatic equilibrium and turbulent transport in Earth’s magnetosphere: A review of experimental observation data and theoretical approaches // International Journal of Geomagnetism and Aeronomy. V. 3. № 2. P. 117–130. 2002.
  9. Belov A., Baisultanova L., Eroshenko E., Mavromichalaki H., Yanke V., Pchelkin V., Plainaki C., Mariatos G. Magnetospheric effects in cosmic rays during the unique magnetic storm on November 2003 // J. Geophys. Res. V. 110. A09S20. 2005. https://doi.org/10.1029/2005JA011067.
  10. Belov S.M., Zobnin G.I., and Yanke V.G. Program for calculating the geomagnetic cutoff rigidity of cosmic rays and the trajectories of their motion // Bull. Russ. Acad. Sci.: Phys. V. 85. № 11. P. 1297–1301. 2021. https://doi.org/10.3103/S106287382111006X.
  11. Borovsky J.E., Denton M.H. Differences between CMEdriven storms and CIR-driven storms // J. Geophys. Res. V. 111. Iss. A7. A07S08. 2006. https://doi.org/ 10.1029/2005JA011447.
  12. Castillo Y., Pais M.A., Fernandes J., Ribeiro P., Morozova A.L. Geomagnetic activity at Northern Hemisphere’s mid-latitude ground stations: How much can be explained using Ts05 model // Journal of Atmospheric and Solar-Terrestrial Physics. V. 165–166. P. 38–53. 2017. https://doi.org/10.1016/j.jastp.2017.11.002.
  13. D’Amicis R., Bruno R., Bavassano B. Geomagnetic activity driven by solar wind turbulence // JASR. V. 46. P. 514–520. 2010. https://doi.org/10.1016/j.asr.2009.08.031
  14. Dorman L.I. Elementary particle and cosmic ray physics. Elsevier. New York, 456 p. 1963.
  15. Dungey J.W. Interplanetary magnetic field and the auroral zones // Phys Rev Lett. V. 6. P. 47–48. 1961. https://doi.org/10.1103/PhysRevLett.6.47.
  16. Dubyagin S., Ganushkina N., Kubyshkina M., Liemohn M. Contribution from different current systems to SYM and ASY midlatitude indices // J. Geophys. Res. Space Phys. V. 119. P. 7243–7263. 2014.
  17. Flückiger E.O., Smart D.F., Shea M.A. Determination the strength of the ring and the magnetopause currents during the initial phase of geomagnetic storm using cosmic ray data // J. Geophys. Res. V. 95 (A2). P. 1113–1118. 1990. https://doi.org/10.1029/ JA095iA02p01113
  18. Ganushkina N.Y., Liemohn M.W., Dubyagin S. Current systems in the Earth’s magnetosphere // Reviews of Geophysics. V. 56. P 309–332. 2018. https://doi.org/10.1002/2017RG000590
  19. Gosling J.T. The solar flare myth // J. Geophys. Res. Space Physics. V. 98. № A11. 18937–18949. 1993. https://doi.org/10.1029/93JA01896
  20. Gonzalez W.D., Tsurutani B.T. Criteria of Interplanetary Parameters Causing Intense Magnetic Storms (Dst < −100 nT) // Planetary Space Science V. 35. P. 110–1109. 1987. https://doi.org/10.1016/0032-0633(87)90015-8
  21. Gonzalez W.D., Tsurutani B.T., Clúa de Gonzalez A.L. Interplanetary origin of geomagnetic storms // Space Science Reviews. V. 88. № 3. P. 529–562. 1999.
  22. Gromova L.I., Kleimenova N.G., Gromov S.V., Kanonidi K.K., Petrov V.G., Malysheva L M. Intensive substorms during the main phase of the magnetic storm on march 23–24, 2023 // Geomagn. Aeron. V. 64. P. 881–889. 2024. https://doi.org/10.1134/S0016793224600772
  23. Kalegaev V.V., Ganushkina N.Yu., Pulkkinen T.I., Kubyshkina M.V., Singer H.J., Russell C.T. Relation between the Ring Current and the Tail Current During Magnetic Storms // Ann. Geophys. V. 26. № 2. P. 523–533. 2005.
  24. Kalegaev V.V. Dynamic Geomagnetic Field Models // Geomagnetism and Aeronomy. V. 51. № 7. P. 855–865. 2011. https://doi.org/10.1134/S0016793211070073.
  25. Kress B.T., Mertens C.J., Wiltberger M. Solar energetic particle cutoff variations during the 29–31 October 2003 geomagnetic storm // Space Weather. V. 8. S05001. 2010. https://doi.org/10.1029/2009SW000488
  26. Kress B.T., Hudson M.K., Perry K.L., Slocum P.L. Dynamic modeling of geomagnetic cutoff for the 23–24 November 2001 solar energetic particle event // Geophys. Res. Lett. V. 31. L04808. 2004. https://doi.org/10.1029/2003GL018599.
  27. Kress B.T., Hudson M.K., Selesnick R.S., Mertens C.J., Engel M. Modeling geomagnetic cutoffs for space weather applications // J. Geophys. Res. Space Physics. V. 120. № 7. P. 5694–5702. 2015. https://doi.org/10.1002/2014JA020899
  28. McCracken K.G., Rao U.R., Shea M.A. The trajectories of cosmic rays in a high degree simulation of the geomagnetic field // M.I.T. Tech. Rep. 77. Lab. for Nucl. Sci. and Eng., Mass. Inst. of Technol. Cambridge. 1962.
  29. Ptitsyna N.G., Danilova О.А., Tyasto M.I, Sdobnov V.E. Cosmic ray cutoff rigidity governing by solar wind and magnetosphere parameters during the 2017 Sep 6–9 solar-terrestrial event // Journal of Atmospheric and Solar-Terrestrial Phys. V. 246. Article Number 106067. 2023. https://doi.org/10.1016/j.jastp.2023.106067
  30. Richardson I.G. Solar wind stream interaction regions throughout the heliosphere // Living Rev Sol Phys. V. 15. № 1. P. 1–95. 2018. https://doi.org/10.1007/s41116-017-0011-z.
  31. Russell C.T. Reconnexion, in Physics of Solar Planetary Environments / Proceedings of the International Symposium on Solar-Terrestrial Physics. June 7–18. 1976. Boulder. Colorado V.II / Ed. D.J. Williams. P. 526–540. AGU. Washington D. C. 1976. https://doi.org/10.1029/SP008p0526.
  32. Shea M.A., Smart D.F., McCracken K.G. A study of vertical cutoff rigidities using sixth degree simulations of the geomagnetic field // J. Geophys. Res. V. 70. P. 4117–4130. 1965.
  33. Shimazu H. Solar proton event and proton propagation in the Earth’s magnetosphere // J. Natl. Inst. Inf. Commun.Technol. V. 56. № 1–4. P. 191–199. 2009. https://www.nict.go.jp/publication/shuppan/kihou-journal/journal-vol56no1_2_3_4/journal-vol56no1-4_020305.pdf.
  34. Störmer C. The Polar Aurora // London: Oxford University Press. Quarterly Journal of the Royal Meteorological Society: V. 82. Iss. 351. P. 115–115. 1956. ttps://doi.org/10.1002/qj.49708235123.
  35. Tahir A., Wu F., Shah M, Amory-Mazaudier C., Jamjareegulgarn P., Verhulst T.G.W., Ameen М.A. Multi-Instrument Observation of the Ionospheric Irregularities and Disturbances during the 23–24 March 2023 Geomagnetic Storм // Remote Sens. V. 16. № 9. P. 1594–1621. 2024. https://doi.org/10.3390/rs16091594
  36. Teng W., Su Y., Ji H., Zhan Q. Unexpected major geomagnetic storm caused by faint eruption of a solar transequatorial flux rope // Nature Communications. V. 15. P. 9198–9214. 2024 https://doi.org/10.1038/s41467-024-53538-1.
  37. Tsyganenko N.A., Singer H.J., Kasper J.C. Storm-time distortion of the inner magnetosphere: How severe can it get? // J. Geophys. Res. V. 108 (A5). P. 1209–1215. 2003. https://doi.org/10.1029/2002JA009808.
  38. Tyssøy H.N., Stadsnes J. Cutoff latitude variation during solar proton events: Causes and consequences // J. Geophys.Res.Space Physics. V. 120. P. 553–563. 2014. https://doi.org/10.1002/2014JA0200508.
  39. https://kauai.ccmc.gsfc.nasa.gov/CMEscoreboard/PreviousPredictions/2023.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Variations in solar wind parameters, IMF and geomagnetic activity indices during the storm on March 23–24, 2023. Vertical lines indicate the main phase of the storm.

Download (2MB)
3. Fig. 2. Variations of geomagnetic thresholds ΔReff for the studied stations during the evolution of the storm on September 23–24, 2023. (a) – Dst index; (b) – ΔReff. The ΔReff curves are arranged from top to bottom in order of increasing CL station latitude (decreasing threshold rigidities Rc). The vertical lines mark the main phase of the storm, as in Fig. 1.

Download (2MB)
4. Fig. 3. Diagram of geoeffective (│k│ ≥ 0.45) correlations of the values of variations in geomagnetic cutoff rigidities ΔReff with interplanetary and geomagnetic parameters.

Download (564KB)

Copyright (c) 2025 Russian Academy of Sciences