Сорбция красителя нейтрального красного энтеросорбентом полисорбом мп из микроэмульсии аот в Н-декане
- Авторы: Демидова М.Г.1, Подлипская Т.Ю.1, Шапаренко Н.О.1, Баракина М.К.1,2, Татарчук В.В.1, Булавченко А.И.1
-
Учреждения:
- Федеральное государственное бюджетное учреждение науки Институт неорганической химии им А.В. Николаева СО РАН
- Новосибирский государственный университет
- Выпуск: Том 87, № 2 (2025)
- Страницы: 109-117
- Раздел: Статьи
- Статья получена: 06.07.2025
- Статья одобрена: 06.07.2025
- Статья опубликована: 06.07.2025
- URL: https://clinpractice.ru/0023-2912/article/view/686795
- DOI: https://doi.org/10.31857/S0023291225020032
- EDN: https://elibrary.ru/tperxm
- ID: 686795
Цитировать
Аннотация
Проведена сорбция катионного красителя нейтрального красного Полисорбом МП из микро- эмульсии 0.25 моль/л АОТ в н-декане при различных содержаниях водной псевдофазы. Предельная сорбционная емкость сорбента в микроэмульсии на порядок превысила соответствующую в водной фазе и составила 55 мг/г. Продемонстрированы резкое падение степени извлечения при увеличении содержания воды в микроэмульсии от 1 до 9 объемных процентов и обратимость сорбционных процессов. Анионные красители в тех же системах Полисорбом не извлекались. С ростом содержания воды дзета-потенциал частиц SiO2 уменьшался с 18 до 1 мВ. На основании полученных зависимостей предложен катионообменный механизм микроэмульсионной сорбции, включающий обмен катионов натрия и нейтрального красного между мицеллами, адсорбированными на поверхности частиц, и мицеллами в объеме микроэмульсии.
Полный текст

Об авторах
М. Г. Демидова
Федеральное государственное бюджетное учреждение науки Институт неорганической химии им А.В. Николаева СО РАН
Email: nikshapar@mail.ru
Россия, Новосибирск
Т. Ю. Подлипская
Федеральное государственное бюджетное учреждение науки Институт неорганической химии им А.В. Николаева СО РАН
Email: nikshapar@mail.ru
Россия, Новосибирск
Н. О. Шапаренко
Федеральное государственное бюджетное учреждение науки Институт неорганической химии им А.В. Николаева СО РАН
Автор, ответственный за переписку.
Email: nikshapar@mail.ru
Россия, Новосибирск
М. К. Баракина
Федеральное государственное бюджетное учреждение науки Институт неорганической химии им А.В. Николаева СО РАН; Новосибирский государственный университет
Email: nikshapar@mail.ru
Россия, Новосибирск; Новосибирск
В. В. Татарчук
Федеральное государственное бюджетное учреждение науки Институт неорганической химии им А.В. Николаева СО РАН
Email: nikshapar@mail.ru
Россия, Новосибирск
А. И. Булавченко
Федеральное государственное бюджетное учреждение науки Институт неорганической химии им А.В. Николаева СО РАН
Email: nikshapar@mail.ru
Россия, Новосибирск
Список литературы
- Bera A., Mandal A. Microemulsions: a novel approach to enhanced oil recovery: a review // J. Petrol. Explor. Prod. Technol. 2015. V. 5. P. 255–268. https://doi.org/10.1007/s13202-014-0139-5
- Федоренко С.В., Степанов А.С., Бочкова О.Д., Мустафина А.Р. Основные процессы, способствующие формированию композитных кремнеземных наноколлоидов, допированных комплексами d-, f-металлов и неорганическими наночастицами // Коллоид. журн. 2022. Т. 84. № 5. С. 630–641. https://doi.org/10.31857/S0023291222600067
- Мурашова Н.М., Нгуен Х.Т. Микроэмульсии лецитина с маслом гака и эфирным маслом куркумы // Коллоид. жур. 2023. Т. 85. № 2. С. 191–199. https://doi.org/10.31857/S0023291223600049
- Schwarze M., Pogrzeba T., Volovych I., Schomacker R. Microemulsion systems for catalytic reactions and processes // Catal. Sci. Technol. 2015. V. 5. P. 24–33. https://doi.org/10.1039/c4cy01121j
- Gradzielski M., Duvail M., Malo de Molina P., Simon M., Talmon Y. Using microemulsions: formulation based on knowledge of their mesostructured // Chem. Rev. 2021. V. 121. № 10. P. 5671–5740. https://doi.org/10.1021/acs.chemrev.0c00812
- Agarwala R., Mulky L. Adsorption of dyes from wastewater: a comprehensive review // ChemBioEng Reviews. 2023. V. 10. № 3. P. 326–335. https://doi.org/10.1002/cben.202200011
- Yi S., Deng Y., Sun S. Adsorption and dyeing characteristics of reactive dyes onto cotton fiber in nonionic Triton X-100 reverse micelles // Fibers Polym. 2014. V. 15. P. 2131–2138. https://doi.org/10.1007/s12221-014-2131-6
- Tang Y.L., Jin S., Lee C.H., Law H.S., Yu J., Wang Y., Kan C. Reverse micellar dyeing of cotton fabric with reactive dye using biodegradable non-ionic surfactant as nanoscale carrier: an optimization study by one-factor-at-one-time approach // Polymers. 2023. V. 15. № 20. P. 4175. https://doi.org/10.3390/polym15204175
- Sharma R., Kar P.K., Dash S. Adsorption of a styrylpyridinium dye on silica and modified silica surfaces from some binary solvent mixtures-should we call it solvent-induced preferential adsorption? // J. Phys. Chem. C. 2023. V. 127. P. 20539–20548. https://doi.org/10.1021/acs.jpcc.3c05023
- Khraishes M.A.M., Al-ghouti M.S. Enhanced dye adsorption by microemulsion-modified calcined diatomite (µE-CD) // Adsorption. 2005. V. 11. P. 547–559. https://doi.org/10.1007/s10450-005-5612-5
- Skrabkova H.S., Bubenschikov V.B., Kodina G.E., Lunev A.S., Larenkov A.A., Epshtein N.B., Kabashin A.V. 68Ga-adsorption on the Si-nanoparticles // IOP Conf. Series: Materials Science and Engineering. 2019. V. 487. P. 012026. https://doi.org/10.1088/1757-899X/487/1/012026
- Shklyaeva A.S., Vasilieva O.V., Kucuk V.I. The study of physical and chemical properties aqueous dispersion of enterosorbent Polysorb MP // Butlerov Commun. 2013. V. 35. P. 94–99.
- Shah Z.A., Zaib K., Khan A., Saeed M. Dye sensitized solar cells based on different solvents: comparative study // J. Fundam. Renewable Energy Appl. 2017. V. 7. № 4. P. 1000234. https://doi.org/10.4172/2090-4541.1000234
- Fang H., Ma J., Wilhelm M.J., DeLacy B.G., Dai H.L. Influence of solvent on dye-sensitized solar cell efficiency: what is so special about acetonitrile? // Particles and Particle Systems Characterization. 2021. V. 38. P. 2000220. https://doi.org/10.1002/ppsc.202000220
- Eicke H.F. Aggregation in surfactant solutions: formation and properties of micelles and microemulsions // Pure Appl. Chem. 1980. V. 52. P. 1349–1357.
- Булавченко А.И., Батищева Е.К., Подлипская Т.Ю., Торгов В.Г. Коллоидно-химические взаимодействия при концентрировании металлов обратными мицеллами оксиэтилированных поверхностно-активных веществ. Исследование солюбилизации // Коллоидный журнал. 1996. Т. 58. № 2. С. 163-168.
- Булавченко А.И., Подлипская Т.Ю., Торгов В.Г. Структурные перестройки обратных мицелл оксиэтилированных ПАВ при инъекционной солюбилизации растворов HCl // Журнал физической химии. 2004. Т. 78. № 12. С. 2258–2263.
- Knysh A., Sokolov P., Nabiev I. Dynamic light scattering analysis in biomedical research and applications of nanoparticles and polymers // J. Biomed. Photonics Eng. 2023. V. 9. № 2. P. 020203. https://doi.org/10.18287/JBPE23.09.020203
- Ohshima H. A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles // J. Colloid Interface Sci. 1994. V. 168. P. 269–271. https://doi.org/10.1006/jcis.1994.1419
- Шапаренко Н.О., Бекетова Д.И., Демидова М.Г., Булавченко А.И. Регулирование заряда и гидродинамического диаметра наночастиц диоксида кремния в микроэмульсиях АОТ // Коллоид. жур. 2019. Т. 81. № 1. С. 78–85. https://doi.org/10.1134/S0023291219010105
- Shaparenko N.O., Demidova M.G., Bulavhcenko A.I. Electrophoretic mobility and stability of SiO2 nanoparticles in the solutions of AOT in n-hexadecane-chloroform // Electrophoresis. 2021. V. 42. № 16. P. 1648–1654. https://doi.org/10.1002/elps.202100060
- Maxim M.E., Stinga G., Iovescu A., Baran A., Ikie C., Anghel D.F. Monitorizing methylene blue inclusion in reverse micellar nanostructures // Revue Roumaine de Chimie. 2012. V. 57. P. 203–208.
- Faeder J., Ladanyi B.M. Molecular dynamics simulations of the interior of aqueous reverse micelles // J. Phys. Chem. B. 2000. V. 104. № 5. P. 1033–1046. https://doi.org/10.1021/jp993076u
- Tartaro G., Mateos H., Schirone D., Angelico R., Palazzo G. Microemulsions microstructure(s): A tutorial review // Nanomaterials. 2020. V. 10. P. 1657. https://doi.org/10.3390/nano10091657
- Van der Minne J.L., Hermanie P.H.J. Electrophoresis measurements in benzene-correlation with stability. I. Development of method // J. Colloid Sci. 1952. V. 7. № 6. P. 600–615. https://doi.org/10.1016/0095-8522(52)90042-1
- Поповецкий П.С. Модели стабилизации заряженных частиц поверхностно-активными веществами в неполярных средах // Коллоид. жур. 2023. Т. 85. № 6. С. 806–817. https://doi.org/10.31857/S0023291223600621
- Saitoh T., Matsushima S., Hiraide M. Aerosol-OT-γ-alumina admicelles for the concentration of hydrophobic organic compounds in water // J. Chromatography A. 2004. V. 1040. № 2. P. 185–191. https://doi.org/10.1016/j.chroma.2004.04.010
- Bulavchenko A.I., Popovetsky P.S. Structure of adsorption layer of silver nanoparticles in sodium bis-(2-ethylhexyl) sulfosuccinate solutions in n-decane as observed by photon-correlation spectroscopy and nonaqueous electrophoresis // Langmuir. 2014. V. 30. № 43. P. 12729–12735. https://doi.org/10.1021/la5004935
- Kalam S., Abu-Khamsin S.A., Kamal M.S., Patil S. Surfactant adsorption isotherms: a review // ACS Omega. 2021. V. 6. № 48. P. 32342–32348. https://doi.org/10.1021/acsomega.1c04661
- Strubbe F., Neyts K. Charge transport by inverse micelles in non-polar media // J. Phys.: Condens. Matter. 2017. V. 29. P. 453003. https://doi.org/10.1088/1361-648X/aa8bf6
- Bulavchenko A.I., Shaparenko N.O., Kompan’kov N.B., Popovetskiy P.S., Demidova M.G., Arymbaeva A.T. The formation of free ions and electrophoretic mobility of Ag and Au nanoparticles in n-hexadecane-chloroform mixtures at low concentrations of AOT // Phys. Chem. Chem. Phys. 2020. V. 22. P. 14671–14681. https://doi.org/10.1039/D0CP02153A
- Kopanichuk I.V., Novikov V.A., Vanin A.A., Brodskaya E.N. The electric properties of AOT reverse micelles by molecular dynamics simulations // J. Mol. Liq. 2019. V. 296. P. 111960. https://doi.org/10.1016/j.molliq.2019.111960
- Bulavchenko A.I., Batishchev A.F., Batishcheva E.K., Torgov V.G. Modeling of the electrostatic interaction of ions in dry isolated micelles of AOT by the method of direct optimization // J. Phys. Chem. B. 2002. V. 106. № 25. P. 6381–6389. https://doi.org/10.1021/jp0144000
- Bairabathina V., Shanmugam K.S.K., Chilukoti G.R., Ponnam V., Raju G., Chidhambaram P. A review on reverse micellar approach for natural fiber dyeing // Color. Technol. 2022. V. 138. P. 329–341. https://doi.org/10.1111/cote.12605
- Ханхасаева С.Ц., Дашинамжилова Э.Ц., Бадмаева С.В., Бардамова А.Л. Адсорбция триарилметанового красителя на Ca-монтмориллоните: равновесие, кинетика и термодинамика // Коллоид. жур. 2018. Т. 80. № 4. С. 472–478. https://doi.org/10.1134/S0023291218040043
- Арефьева О.Д., Пироговская П.Д., Панасенко А.Е., Ковехова А.В., Земнухова Л.А. Кислотно-основные свойства аморфного диоксида кремния из соломы и шелухи риса // Химия растительного сырья. 2٠21. № 1. С. 327–335. https://doi.org/10.14258/jcprm.2021017521
- Гиндин Л.М. Экстракционные процессы и их применение // 1984. Москва: Наука. С. 144.
- Murakami H., Kanahara Y., Sasaki K. Freezing of water solvation dynamics in nanoconfinement by reverse micelles at room temperature // Langmuir. 2024. V. 40. № 25. P. 13082–13091. https://doi.org/10.1021/acs.langmuir.4c00926
- Moulik S.P., Paul B.K., Mukherjee D.C. Acid-base behavior of neutral red in compartmentalized liquids (micelles and microemulsions) // J. Col. Interface Sci. 1993. V. 161. № 1. P. 72–82. https://doi.org/10.1006/jcis.1993.1443
- Кузнецов Д.Н., Кобраков К.И., Ручкина А.Г. Биологически активные синтетические органические красители // Изв. Вузов. Химия и Хим. Технология. 2017. Т. 60. С. 4–33. https://doi.org/10.6060/tcct.2017601.5423
- Umar O., Kumar K., Joshi A., Khairiya D., Teotia D., Ikram. A comprehensive review on microemulsions: a potential novel drug delivery system // Int. J. Indig. Herbs Drugs. 2022. V. 7. № 3. P. 56–61. https://doi.org/10.46956/ijihd.v7i3.315
Дополнительные файлы
