Моделирование поддержания орбиты 3U-кубсата с помощью электронагревного двигателя и магнитной системы ориентации
- Авторы: Ролдугин Д.С.1, Иванов Д.С.1, Ткачев С.С.1, Маштаков Я.В.1, Хохлов А.В.2, Стариков К.И.2,3
-
Учреждения:
- Институт прикладной математики им. М.В. Келдыша РАН
- ООО “Геоскан”
- Санкт-Петербургский государственный университет
- Выпуск: Том 63, № 2 (2025)
- Страницы: 169-178
- Раздел: Статьи
- URL: https://clinpractice.ru/0023-4206/article/view/683443
- DOI: https://doi.org/10.31857/S0023420625020043
- EDN: https://elibrary.ru/GOGXTV
- ID: 683443
Цитировать
Аннотация
Рассматривается задача поддержания орбиты 3U-кубсата с помощью электронагревного импульсного двигателя и простейшей активной магнитной системы управления ориентацией. Аппарат оснащен только магнитными катушками и магнитометром и не имеет возможности поддержания ориентации оси установки двигателя по касательной к орбите. За счет реализации постоянного дипольного момента и гашения угловой скорости достигается ориентация по вектору геомагнитной индукции. На солнечно-синхронной орбите вблизи узлов такая ориентация близка к ориентации по касательной к орбите. Проводится моделирование движения аппарата с выдачей импульсов коррекции при проходе восходящего узла орбиты. Приведены результаты тестирования двигателя в неуправляемом режиме.
Полный текст

Об авторах
Д. С. Ролдугин
Институт прикладной математики им. М.В. Келдыша РАН
Автор, ответственный за переписку.
Email: rolduginds@gmail.com
Россия, Москва
Д. С. Иванов
Институт прикладной математики им. М.В. Келдыша РАН
Email: rolduginds@gmail.com
Россия, Москва
С. С. Ткачев
Институт прикладной математики им. М.В. Келдыша РАН
Email: rolduginds@gmail.com
Россия, Москва
Я. В. Маштаков
Институт прикладной математики им. М.В. Келдыша РАН
Email: rolduginds@gmail.com
Россия, Москва
А. В. Хохлов
ООО “Геоскан”
Email: rolduginds@gmail.com
Россия, Санкт-Петербург
К. И. Стариков
ООО “Геоскан”; Санкт-Петербургский государственный университет
Email: rolduginds@gmail.com
Россия, Санкт-Петербург; Санкт-Петербург
Список литературы
- Ovchinnikov M.Y., Roldugin D.S. A survey on active magnetic attitude control algorithms for small satellites // Progress in Aerospace Sciences. 2019. V. 109. Art. ID. 100546. https://doi.org/10.1016/j.paerosci.2019.05.006
- Searcy J.D., Pernicka H.J. Magnetometer-Only Attitude Determination Using Novel Two-Step Kalman Filter Approach // J. Guidance, Control, and Dynamics. 2012. V. 35. Iss. 6. P. 1693–1701.https://doi.org/10.2514/1.57344
- Psiaki M.L. Global Magnetometer-Based Spacecraft Attitude and Rate Estimation // J. Guidance, Control, and Dynamics. 2004. V. 27. Iss. 2. P. 240–250.
- Abdelrahman M., Park S.-Y. Integrated attitude determination and control system via magnetic measurements and actuation // Acta Astronautica. 2011. V. 69. Iss. 3–4. P. 168–185. https://doi.org/10.1016/J.actaastro.2011.03.010
- Буланов Д.М., Сазонов В.В. Исследование эволюции вращательного движения спутника Фотон М-2 // Косм. исслед. 2020. Т. 58. № 4. С. 291–304. https://doi.org/10.31857/S0023420620040032
- Абрашкин В.И., Воронов К.Е., Дорофеев А.С. и др. Определение вращательного движения малого космического аппарата Аист-2Д по данным магнитных измерений // Косм. исслед. 2019. Т. 57. № 1. С. 61–73. https://doi.org/10.1134/S0023420619010011
- Крамлих А.В., Николаев П.Н., Рылько Д.В. Бортовой двухэтапный алгоритм определения ориентации наноспутника SAMSAT-ION // Гироскопия и навигация. 2023. Т. 31. № 2. С. 65–85.
- Ovchinnikov M.Y., Roldugin D.S., Penkov V.I. Asymptotic study of a complete magnetic attitude control cycle providing a single-axis orientation // Acta Astronautica. 2012. V. 77. P. 48–60. https://doi.org/10.1016/j.actaastro.2012.03.001
- Lovera M., Astolfi A. Spacecraft attitude control using magnetic actuators // Automatica. 2004. V. 40. Iss. 8. P. 1405–1414. https://doi.org/10.1016/j.automatica.2004.02.022
- Celani F. Robust three-axis attitude stabilization for inertial pointing spacecraft using magnetorquers // Acta Astronautica. 2015. V. 107. P. 87–96. https://doi.org/10.1016/j.actaastro.2014.11.027
- Wisniewski R. Linear Time-Varying Approach to Satellite Attitude Control Using Only Electromagnetic Actuation // J. Guidance, Control, and Dynamics. 2000. V. 23. Iss. 4. P. 640–647. https://doi.org/10.2514/2.4609
- Okhitina A., Roldugin D., Tkachev S. Application of the PSO for the construction of a 3-axis stable magnetically actuated satellite angular motion // Acta Astronautica. 2022. V. 195. P. 86–97. https://doi.org/10.1016/J.ACTAASTRO.2022.03.001
- Сарычев В.А., Сазонов В.В. Оптимальные параметры пассивных систем ориентации спутников // Косм. исслед. 1976. Т. 14. № 2. С. 198–208.
- Сарычев В.А., Овчинников М.Ю. Движение спутника с постоянным магнитом относительно центра масс // Косм. исслед. 1986. Т. 24. № 4. С. 527–543.
- Белецкий В.В., Яншин А.М. Влияние аэродинамических сил на вращательное движение искусственных спутников. Киев: Наукова Думка, 1984. 187 с.
- Guerman A.D., Ivanov D.S., Roldugin D.S. et al. Orbital and Angular Dynamics Analysis of the Small Satellite SAR Mission INFANTE // Cosmic Research. 2020. V. 58. Iss. 3. P. 206–217. https://doi.org/10.1134/S0010952520030016
- ГОСТ Р 25645.166–2004. Атмосфера Земли верхняя. Модель плотности для баллистического обеспечения полетов искусственных спутников Земли. М.: ИПК Издательство стандартов, 2004. 24 с.
- Alken P., Thébault E., Beggan C.D. et al. International Geomagnetic Reference Field: the thirteenth generation // Earth, Planets and Space. 2021. V. 73. Iss. 1. Art. ID. 49. https://doi.org/10.1186/s40623–020–01288-x
- Иванов Д.С., Овчинников М.Ю., Ролдугин Д.С. и др. Программный комплекс для моделирования орбитального и углового движения спутников // Математическое моделирование. 2019. Т. 31. № 12. С. 44–56. https://doi.org/10.1134/S0234087919120049
Дополнительные файлы
