Crystal chemistry of silver borates with salt-inclusion structures

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A review of structural studies of silver borates with salt-inclusion structures is presented. Data on the first halogen-containing silver borates are provided, along with the structural and physicochemical characterization of the Ag4B4O7X2 (X = Br, I), Ag3B6O10X (X = Br, I, NO3), Ag4B7O12X (X = Cl, Br, I) families, as well as Ag4(B3O6)(NO3) and Ag3B4O6(OH)2(NO3). The crystal structures of these compounds are framework-type, layered, or composed of isolated boron-oxygen groups. In almost all cases, silver atoms exhibit pronounced anharmonicity in thermal displacements, which was investigated using X-ray structural analysis, including extensive temperature-dependent studies. The reasons for the low stability of chlorine-containing silver borates are discussed, along with the relationship between the anharmonicity of thermal displacements and other properties, such as the high ionic conductivity of Ag3B6O10I.

全文:

受限制的访问

作者简介

S. Volkov

Xinjiang Technical Institute of Physics and Chemistry; Kola Science Centre RAS

编辑信件的主要联系方式.
Email: s.n.volkov@inbox.ru
中国, CAS, Urumqi; Apatity

D. Charkin

Lomonosov Moscow State University; Kola Science Centre RAS

Email: s.n.volkov@inbox.ru
俄罗斯联邦, Moscow; Apatity

S. Aksenov

Kola Science Centre RAS

Email: s.n.volkov@inbox.ru
俄罗斯联邦, Apatity

A. Banaru

Lomonosov Moscow State University; Kola Science Centre RAS

Email: s.n.volkov@inbox.ru
俄罗斯联邦, Moscow; Apatity

Yu. Kopylova

St. Petersburg State University; Kola Science Centre RAS

Email: s.n.volkov@inbox.ru

Institute of Earth Sciences

俄罗斯联邦, St. Petersburg; Apatity

R. Bubnova

National Research Centre “Kurchatov Institute” – Petersburg Nuclear Physics Institute (PNPI)

Email: s.n.volkov@inbox.ru

Grebenshchikov Institute of Silicate Chemistry

俄罗斯联邦, St. Petersburg

参考

  1. Bubnova R.S., Filatov S.K. // Z. Kristallogr. Cryst. Mater. 2013. V. 228 P. 395. https://doi.org/10.1524/zkri.2013.1646
  2. Bubnova R., Volkov S., Albert B. et al. // Crystals (Basel). 2017. V. 7. P. 93. https://doi.org/10.3390/cryst7030093
  3. Topnikova A.P., Belokoneva E.L. // Russ. Chem. Rev. 2019. V. 88. P. 204. https://doi.org/10.1070/RCR4835
  4. Leonyuk N.I., Maltsev V.V., Volkova E.A. // Molecules. 2020. V. 25. P. 2450. https://doi.org/10.3390/molecules25102450
  5. Mutailipu M., Poeppelmeier K.R., Pan S. // Chem. Rev. 2021. V. 121. P. 1130. https://doi.org/10.1021/acs.chemrev.0c00796
  6. Huang C., Mutailipu M., Zhang F. et al. // Nat. Commun. 2021. V. 12. P. 2597. https://doi.org/10.1038/s41467-021-22835-4
  7. Пятницкий И.В., Сухан В.В. Аналитическая химия серебра. М.: Наука, 1975. 264 с.
  8. Shannon R.D. // Acta Cryst. А. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  9. Hyman A., Perloff A., Mauer F. et al. // Acta Cryst. 1967. V. 22. P. 815. https://doi.org/10.1107/S0365110X6700163X
  10. Krogh-Moe J. // Acta Cryst. 1965. V. 18. P. 77. https://doi.org/10.1107/S0365110X65000142
  11. Volkov S.N., Charkin D.O., Arsentev M.Yu. et al. // CrystEngComm. 2022. V. 24. P. 4174. https://doi.org/10.1039/D2CE00307D
  12. Volkov S.N., Charkin D.O., Kireev V.E. et al. // Solid State Sci. 2023. V. 145. P. 107311. https://doi.org/10.1016/j.solidstatesciences
  13. Chen Z., Pan S., Dong X. et al. // Inorg. Chim. Acta. 2023. V. 406. P. 205. https://doi.org/10.1016/j.ica.2013.04.046
  14. Yakubovich O.V., Perevoznikova I.V., Dimitrova O.V. et al. // Doklady Physics. 2002. V. 47. P. 791. https://doi.org/10.1134/1.1526424
  15. Corazza E., Menchetti S., Sabelli C. // Am. Mineral. 1974. V. 59. P. 1005.
  16. Volkov S., Aksenov S., Charkin D. et al. // Solid State Sci. 2024. V. 148. P. 107414. http://dx.doi.org/10.1016/j.solidstatesciences.2023.107414
  17. Touboul M., Penin N., Nowogrocki G. // Solid State Sci. 2004. V. 5. P. 1327. https://doi.org/10.1016/S1293-2558(03)00173-0
  18. Sennova N.A., Bubnova R.S., Filatov S.K. et al. // Glass Phys. Chem. 2007. V. 33. P. 217. https://doi.org/10.1134/S1087659607030054
  19. Dong X., Wu H., Shi Y. et al. // Chem. A. Eur. J. 2013. V. 19. P. 7338. https://doi.org/10.1002/chem.201300902
  20. Bürgi H.B., Capelli S.C., Birkedal H. // Acta Cryst. А. 2000. V. 56. P. 425. https://doi.org/10.1107/S0108767300008734
  21. Schulz H. // The Physics of Superionic Conductors and Electrode Materials. Boston: Springer, 1983. P. 5. https://doi.org/10.1007/978-1-4684-4490-2_2
  22. Perenthaler E., Schulz H., Beyeler H.U. // Solid State Ion. 1981. V. 5. P. 493. https://doi.org/10.1016/0167-2738(81)90300-3
  23. Boucher F., Evain M., Brec R. // J. Solid State Chem. 1993. V. 107. P. 332. https://doi.org/10.1006/jssc.1993.1356
  24. Bindi L., Cooper M.A., McDonald A.M. // Can. Mineral. 2015. V. 53. P. 159. https://doi.org/10.3749/canmin.1500009
  25. Kuhs W. // Aust. J. Phys. 1988. V. 41. P. 369. https://doi.org/10.1071/PH880369
  26. Volkov S.N., Charkin D.O., Firsova V.A. et al. // Crystallogr. Rev. 2023. V. 29. P. 147. https://doi.org/10.1080/0889311X.2023.2266400
  27. Kuhs W.F. // International Tables for Crystallography. Chester: International Union of Crystallography, 2006. P. 228. https://doi.org/10.1107/97809553602060000636
  28. Trueblood K.N., Bürgi H.B., Burzlaff H. et al. // Acta Cryst. A. 1996. V. 52. P. 770. https://doi.org/10.1107/S0108767396005697
  29. Morrison G., zur Loye H.-C. // Cryst. Growth Des. 2020. V. 20. P. 8071. https://doi.org/10.1021/acs.cgd.0c01317
  30. West J.P., Hwu S.-J. // J. Solid State Chem. 2012. V. 195. P. 101. https://doi.org/10.1016/j.jssc.2012.06.015
  31. Bai C., Han S., Pan S. et al. // RSC Adv. 2015. V. 5. P. 12416. https://doi.org/10.1039/C4RA16639F
  32. Yan Y., Jiao J., Tu C. et al. // J. Mater. Chem. 2022. V. 10. P. 8584. https://doi.org/10.1039/D2TC01598F
  33. Plachinda P.A., Dolgikh V.A., Stefanovich S.Yu. et al. // Solid State Sci. 2005. V. 7. P. 1194. https://doi.org/10.1016/j.solidstatesciences.2005.05.006
  34. Yakubovich O.V., Mochenova N.N., Dimitrova O.V. et al. // Acta Cryst. E. 2004. V. 60. P. i127. https://doi.org/10.1107/S1600536804023232
  35. Thornley F.R., Kennedy N.S.J., Nelmes R.J. // J. Phys. C. 1976. V. 9. P. 681. https://doi.org/10.1088/0022-3719/9/5/010
  36. Chiodelli G., Flor G., Magistris A. et al. // J. Therm. Anal. 1983. V. 28. P. 273. https://doi.org/10.1007/BF01983260
  37. Volkov S.N., Charkin D.O., Arsent’ev M.Yu. et al. // Inorg. Chem. 2020. V. 59. P. 2655. https://doi.org/10.1021/acs.inorgchem.0c00306
  38. Volkov S.N., Charkin D.O., Firsova V.A. et al. // Inorg. Chem. 2023. V. 62. P. 30. https://doi.org/10.1021/acs.inorgchem.2c03680
  39. Volkov S.N., Charkin D.O., Manelis L.S. et al. // Solid State Sci. 2022. V. 125. P. 106831. https://doi.org/10.1016/j.solidstatesciences.2022.106831
  40. Копылова Ю.О., Волков С.Н., Аксенов С.М. и др. // Журн. структур. химии. 2024. Т. 65. С. 132981. https://doi.org/10.26902/JSC_id132981
  41. Volkov S.N., Charkin D.O., Marsiy I.A. et al. // J. Cryst. Growth. 2024. V. 644. P. 127837. https://doi.org/10.1016/j.jcrysgro.2024.127837
  42. Wang R., Zhong Y., Dong X. et al. // Inorg. Chem. 2023. V. 62. P. 4716. https://doi.org/10.1021/acs.inorgchem.3c00233
  43. Huai L., Liu W., Zhang B.-B. et al. // New J. Chem. 2024. V. 48. P. 13805. https://doi.org/10.1039/D4NJ01687D
  44. Du Z.P., Zhou Y., Zhao S.G. // Chin. J. Appl. Chem. 2023. V. 40. P. 229. https://doi.org/10.19894/j.issn.1000-0518.220225
  45. Якубович О.В., Перевозникова И.В., Димитрова О.В. и др. // Докл. РАН. 2002. Т. 387. С. 54. https://doi.org/10.1134/1.1526424
  46. Chen Z., Pan S., Dong X. et al. // Inorg. Chim Acta. 2013. V. 406. P. 205. https://doi.org/10.1016/j.ica.2013.04.046
  47. Bai C., Yu H., Han S. et al. // Inorg. Chem. 2014. V. 53. P. 11213. https://doi.org/10.1021/ic501814q
  48. Wu H., Pan S., Poeppelmeier K.R. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 7786. https://doi.org/10.1021/ja111083x
  49. Brachtel G., Jansen M. // Z. Anorg. Allg. Chem. 1981. V. 478. P. 13. https://doi.org/10.1002/zaac.19814780703
  50. Jansen M., Brachte G. // Z. Anorg. Allg. Chem. 1982. V. 489. P. 42. https://doi.org/10.1002/zaac.19824890106
  51. Jansen M., Scheld W. // Z. Anorg. Allg. Chem. 1981. V. 477. P. 85. https://doi.org/10.1002/zaac.19814770609
  52. Petříček V., Dušek M., Plášil J. // Z. Kristallogr. Cryst. Mater. 2016. V. 231. P. 583. https://doi.org/10.1515/zkri-2016-1956
  53. Petříček V., Dušek M., Palatinus L. // Z. Kristallogr. Cryst. Mater. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737
  54. Petříček V., Palatinus L., Plášil J. et al. // Z. Kristallogr. Cryst. Mater. 2023. V. 238. P. 271. https://doi.org/10.1515/zkri-2023-0005
  55. Gagné O.C., Hawthorne F.C. // Acta Cryst. B. 2017. V. 73. P. 956. https://doi.org/10.1107/S2052520617010988
  56. Hawthorne F.C. // Am. Mineral. 2015. V. 100. P. 696. https://doi.org/10.2138/am-2015-5114
  57. Jansen M. // Angew. Chem. Int. Ed. 1987. V. 26. P. 1098. https://doi.org/10.1002/anie.198710981
  58. Schmidbaur H., Schier A. // Angew. Chem. Int. Ed. 2015. V. 54. P. 746. https://doi.org/10.1002/anie.201405936
  59. Filatov S.K., Bubnova R.S. // Phys. Chem. Glasses. 2000. V. 41. P. 216.
  60. Woller K.-H., Heller G. // Z. Kristallogr. Cryst. Mater. 1981. V. 156. P. 151. https://doi.org/10.1524/zkri.1981.156.1-2.151
  61. Giese R.F. // Science. 1966. V. 154. P. 1453. https://doi.org/10.1126/science.154.3755.1453
  62. Kaußler C., Kieslich G. // J. Appl. Cryst. 2021. V. 54. P. 306. https://doi.org/10.1107/S1600576720016386
  63. Hornfeck W. // Acta Cryst. 2020. V. 76. P. 534. https://doi.org/10.1107/S2053273320006634
  64. Krivovichev S.V. // Acta Cryst. B. 2016. V. 72. P. 274. https://doi.org/10.1107/S205252061501906X

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Crystal structure of Ag4B4O7I2 [37] along the [010] direction in comparison with the thermal expansion tensor at 200°C (a); fragment of the boron-oxygen framework in projection onto the ab plane (b); “kernite” chain of pentaborate groups linked to each other (c); thermal displacements of silver atoms in the anharmonic approximation (d).

下载 (40KB)
3. Fig. 2. Ionic (Ag2I)+ (a) and covalent boron-oxygen (b) sublattices in the structure of Ag4B4O7I2 [37].

下载 (16KB)
4. Fig. 3. Projections of the crystal structures of Ag4B7O12X, X = Cl (a), Br (b), I (c), along the b-axis and the corresponding thermal expansion tensors [38]. The corresponding silver halide sublattices are shown on the right; short Ag∙∙∙Ag bonds of 2.5–2.6 Å are shown as dashed lines.

下载 (68KB)
5. Fig. 4. Fragment of the structures of Ag4B7O12X, X = Cl (a), I (b), demonstrating the anharmonicity of thermal displacements for XAg5 polyhedra [38].

下载 (13KB)
6. Fig. 5. Crystal structure of Ag3B6O10Br (a), Ag3B6O10I (b) and Ag3B6O10(NO3) (c) [11, 12].

下载 (50KB)
7. Fig. 6. Partially disordered boron-oxygen framework in the crystal structure of Ag3B6O10Br [12].

下载 (16KB)
8. Fig. 7. Schematic diagram of structural relationships between centrosymmetric and non-centrosymmetric members of the M3B6O10X family [11, 12].

下载 (30KB)
9. Fig. 8. Boron-oxygen layer in the structures of Ag8B8O15Cl2, Ag8B8O15(OH)Br (a) and boron-oxygen groups [B16O34] that form these layers (b); kernite chains 5B:2Δ3□:(⟨Δ2□⟩−⟨Δ2□⟩−)∞ that form the crystal structure of chain Ag11B8O16I3 (c) [43].

下载 (53KB)
10. Fig. 9. Crystal structure of Ag4(B3O6)(NO3) (a), NO3 group (b), B9O18 cluster (c), isosurfaces of anharmonic probability density for Ag3 and Ag4 atoms (d) [41].

下载 (25KB)
11. Fig. 10. Comparison of structure-forming chains (a, c, d) and crystal structures (b, d, e) of Ag3B4O6(OH)2(NO3) (a, b), Tl2B4O6(OH)2·2H2O (c, d) and kernite Na2B4O6(OH)2·3H2O (d, f) [40].

下载 (52KB)
12. Fig. 11. Thermal vibrations in the anharmonic approximation for the I(1)Ag4 (a) and I(2)Ag5 (b) polyhedra at 127°C [38]. The shortest I–Ag bonds and their thermal expansion coefficients (10–6 °C–1) are shown.

下载 (12KB)
13. Fig. 12. Distribution of the difference electron density in the vicinity of the Ag2 atom in the structure of Ag4B7O12Br when refining this atom in the anisotropic approximation of thermal displacements [39].

下载 (6KB)
14. Fig. 13. Anharmonicity of thermal displacements of atoms in the Ag2 position in the structures Ag4B7O12X, X = (a) Cl, (b) Br, (c) I [38]. The asymmetry vector ν and its length are shown at the top; the corresponding 2D map is shown at the bottom. The crosses indicate the position of the distribution maximum, the position of the atoms, and δ is the distance between them.

下载 (17KB)
15. Fig. 14. Temperature dependence of specific electrical conductivity of Ag3B6O10I [11].

下载 (3KB)
16. Fig. 15. Crystal structures of δ-Ag3B6O10I (a) and α-Ag3B6O10I (b): iodine atoms (circles), triangles [BO3] and tetrahedra [BO4]. For silver atoms, the probability density function is presented, which shows their migration paths [11].

下载 (19KB)
17. Fig. 16. Anharmonic probability density function of silver and iodine atoms in the crystal structure of Ag3B6O10I at 400°C [11].

下载 (15KB)
18. Fig. 17. Dependence of volumetric thermal expansion, the degree of its anisotropy, melting temperature and configurational entropy on the ionic radius of the halogen ion (X) in structures of the Ag4B7O12X family, X = Cl, Br, I [38].

下载 (24KB)
19. Fig. 18. XAgn polyhedra (n = 5–6) in the structures of the Ag4B7O12X family [38]. The size of the atoms corresponds to the ratio between their ionic radii. Partially shaded silver atoms show the occupancy of their positions.

下载 (9KB)

版权所有 © Russian Academy of Sciences, 2025